Ayçiçek Küspesinden Elde Edilen Protein Hidrolizatlarının Anjiyotensin Dönüştürücü Enzim ve Dipeptidil Peptidaz–IV İnhibisyon Aktiviteleri

Bu çalışmada ayçiçek protein hidrolizatlarının anjiyotensin dönüştürücü enzim (ADE) ve dipeptidil peptidaz-IV (DPP-IV) enzimini inhibe edebilme potansiyeli saptanmıştır. Ayçiçek protein izolatı Alkalaz ve Tripsin+Kimotripsin enzimleri ile hidrolizlenmiş ve elde edilen protein hidrolizatları ultrafiltrasyon ile fraksiyonlanmıştır (5 kDa). Alkalaz ve Tripsin+Kimotripsin enzimleri ile ulaşılan hidroliz dereceleri sırasıyla %27 ve %13 olmuştur. En yüksek ADE inhibisyon aktivitesi (IC50=0,06 ± 0,01 mg/mL) Tripsin+Kimotripsin enzimi ile hidrolizlenen ve molekül ağırlığı 5 kDa’dan düşük olan fraksiyonda gözlenmiştir (P

Angiotensin Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory Activity of Protein Hydrolysates Obtained from Sunflower Meal

In this study, the potential of sunflower protein hydrolysates to inhibit angiotensin converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) enzyme was determined. Sunflower protein isolate was hydrolyzed with Alcalase and Trypsin+Chymotrypsin enzymes and the obtained protein hydrolysates were fractionated by ultrafiltration (5 kDa). The degrees of hydrolysis achieved by Alcalase and Trypsin+Chymotrypsin enzymes were 27% and 13%, respectively. The most potent ACE inhibitory activity (IC50=0.06 ± 0.01 mg/mL) was observed for the fraction that has molecular weight below 5 kDa, which was hydrolyzed by Trypsin+Chymotrypsin enzyme (P

___

  • Adler-Nissen J, Eriksen S, Olsen HS. 1983. Improvement of the functionality of vegetable proteins by controlled enzymatic hydrolysis. Plant Foods for Human Nutrition, 32: 411-423. https://doi.org/10.1007/BF01091198.
  • Adjonu R, Doran G, Torley P, Agboola S. 2013. Screening of whey protein isolate hydrolysates for their dual functionality: Influence of heat pre-treatment and enzyme specificity. Food Chemsitry, 136: 1435-1443. http://dx.doi.org/10.1016/ j.foodchem.2012.09.053.
  • Akıllıoglu G, Karakaya S. 2009. Effects of heat treatment and in vitro digestion on the Anjiyotensin converting enzyme inhibitory activity of some legume species. European Food Research and Technology, 229(6): 915-921. https://doi.org/ 10.1007/s00217-009-1133-x.
  • Aydemir LY, Gökbulut AA, Baran Y, Yemenicioglu A. 2014. Bioactive, functional and edible film-forming properties of isolated hazelnut (Corylus avellana L.) meal proteins. Food Hydrocolloid, 36: 130-142. https://doi:10.1016/ j.foodhyd.2013.09.014.
  • Ayçiçeği Bülteni, 2019. https://www.tarimorman.gov.tr/ BUGEM/Belgeler/MİLLİ%20TARIM/AYÇİÇEĞİ%20KAS IM%20BÜLTENİ.pdf. [Erişim 19.11.2021]
  • Boni R, Assogna A, Grillo F, Robertiello A, Petrucci F, Giacomozzi E, Patricelli A. 1987. Method for preparing protein hydrolysates soluble in an acid environment, and the hydrolysates obtained. European Patent EP0 271 964 A2.
  • Cai T, Chang K, Lunde H. 1996. Physicochemical properties and yields of sunflower protein enzymatic hydrolysates as affected by enzyme and defatted sunflower meal. Journal of Agriculture and Food Chemistry, 44: 3500−3506. https://doi.org/10.1021/jf9507396.
  • Filho JGO, Egea MB. 2021. Sunflower seed byproduct and its fractions for food application: An attempt to improve the sustainability of the oil process. Journal of Food Science, 86: 1497–1510. https://doi.org/10.1111/1750-3841.15719.
  • González-Montoya M, Hernández-Ledesma B, Mora-Escobedo R, Martínez-Villaluenga AC. 2018. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. International Journal of Molecular Sciences, 19: 2883-2897. https://doi.org/10.3390/ijms19102883.
  • Guha S, Sharma H, Deshwal GK, Rao PS. 2021. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Production, Processing and Nutrition, 3(2): 2-21. https://doi.org/10.1186/s43014-020-00045-7.
  • Han R, Maycock J, Murray BS, Boesch C. 2019. Identification of anjiyotensin converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed proteins using two integrated bioinformatic approaches. Food Research International, 115: 283–291. https://doi.org/10.1016/j.foodres.2018.12.015.
  • Han R, Alvarez AJH, Maycock J, Murray BS, Boesch C. 2021. Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates –Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 4: 141–149. https://doi.org/10.1016/j.crfs.2021.03.001
  • Hanafi MA, Hashim SN, Shyan Yea C, Ebrahimpour A, Zarei M, Muhammad K, Abdul-Hamid A, Saari N. 2018. High anjiyotensin-I converting enzyme (ACE) inhibitory activity of Alcalase-digested green soybean (Glycine max) hydrolysates. Food Research International, 106: 589-597. https://doi.org/10.1016/j.foodres.2018.01.030.
  • Karefyllakis D, Altunkaya S, Berton-Carabin CC, van der Goot AJ, Nikiforidis CV. 2017. Physical bonding between sunflower proteins and phenols: Impact on interfacial properties. Food Hydrocolloids, 73: 326-334. http://dx.doi.org/10.1016/j.foodhyd.2017.07.018
  • Keidar, S., Kaplan, M. and Gamliel-Lazarovich, A. 2007. ACE2 of the heart: From anjiyotensin I to anjiyotensin (1–7). Cardiovascular Reserach, 73: 463–469. 1 https://doi.org/0.1016/j.cardiores.2006.09.006.
  • Ketnawa S, Benjakul S, Martínez-Alvarez O, Rawdkuen S. 2017. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chemistry, 215: 383–390. https://doi.org/10.1016/j.foodchem.2016.07.145.
  • Korhonen H, Pihlanto A. 2006. Bioactive peptides: production and functionality. International Dairy Journal, 16: 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012.
  • Lia G-H, Lea G-W, Shia Y-H, Shrestha S. 2004. Anjiyotensin I– converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24: 469–486. https://doi.org/ 10.1016/j.nutres.2003.10.014.
  • Liu C, Fang L, Min W, Liu J, Li H. 2018. Exploration of the molecular interactions between anjiyotensin-I-converting enzyme (ACE) and the inhibitory peptides derived from hazelnut (Corylus heterophylla Fisch.). Food Chemistry, 245, 471–480. https://doi.org/10.1016/j.foodchem.2017.10.095.
  • Ma ̈kinen S, Johannson T, Gerd EV, Pihlava JM, Pihlanto A. 2012. Anjiyotensin I- onverting enzyme inhibitory and antioxidant properties of rapeseed hydrolysates. Journal of Functional Foods, 4: 575-583. http://dx.doi.org/ 10.1016/j.jff.2012.03.003
  • Megias C, Yust MM, Pedroche J, Lquari H, Giron-Calle J, Alaiz M, Millaan F, Vioque J. 2004. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. Journal of Agriculture and Food Chemistry, 52: 1928-1932. https://doi.org/10.1021/jf034707r.
  • Megias C, Pedroche J, Yust MM, Giroan-Calle JG, Alaiz M, Millaan F, Vioque J. 2007. Affinity purification of copper- chelating peptides from sunflower protein hydrolysates. Journal of Agriculture and Food Chemistry, 55: 6509−6514. https://doi.org/10.1021/jf0712705.
  • Megias C, Pedroche J, Yust MM, Alaiz M, Giro ́n-Calle J, Milla ́n F, Vioque J. 2009. Purification of anjiyotensin converting enzyme inhibitory peptides from sunflower protein hydrolysates by reverse-phase chromatography following affinity purification. LWT - Food Science and Technology, 42: 228–232. https://doi.org/10.1016/ j.lwt.2008.05.003.
  • Nongonierma AB, FitzGerald RJ. 2014. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 165: 489–498. https://doi.org/10.1016/ j.foodchem.2014.05.090.
  • Nongonierma AB, Hennemann M, Paolella S, FitzGerald RJ. 2017. Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food & Function. 8(6): 2249-2257. https://doi.org/ 10.1039/c7fo00165g.
  • Parrado J, Millan F, Hernandez Pinzon I, Bautista J, Machado A. 1993. Characterization of enzymatic sunflower protein hydrolysates. Journal of. Agriculture and Food Chemistry, 41: 1821-1825. https://doi.org/10.1007/s11746-999-0184-2
  • Pérez SG. 2003. Physico-chemical and functional properties of sunflower proteins. Ph.D. Dissertation, Wageningen University, Wageningen, The Netherlands.
  • Pickardt C, Weisz GM, Eisner P, Kammerer DR, Neidhart S, Carle RR. 2011. Processing of low polyphenol protein isolates from residues of sunflower seed oil production. Procedia Food Science, 1: 1417-1424. https://doi.org/ 10.1016/j.profoo.2011.09.210.
  • Rivero-Pino F, Espejo-Carpio J, Guadix EM. 2021. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chmeistry, 354: 129473. https://doi.org/10.1016/j.foodchem.2021.129473.
  • Salgado PR, Ortiz SEM, Petruccelli S, Mauri AN. 2011. Sunflower protein concentrates and isolates prepared from oil cakes have high water solubility and antioxidant capacity. Journal of the American Oil Chemists’ Society, 88:351-360. https://doi.org/10.1007/s11746-010-1673-z.
  • Shalaby SM, Zakora M, Otte J. 2006. Performance of two commonly used anjiyotensin-converting enzyme inhibition assays using FA-PGG and HHL as substrates. Journal of Dairy Research, 73(2): 178-186. https://doi.org/ 10.1017/S0022029905001639.
  • Villanueva A, Vioque J, Sánchez-Vioque R, Clemente A, Bautista J, Millán, F. 1999a. Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas y Aceites, 50: 472-476. https://doi.org/10.3989/gya.1999.v50.i6.697.
  • Villanueva A, Vioque J, Sánchez-Vioquea R, Clemente A, Pedroche J, Bautista J, Millán F. 1999b. Peptide characteristics of sunflower protein hydrolysates. Journal of the American Oil Chemists’ Society, 76: 1455-1460. https://doi.org/10.1007/s11746-999-0184-2.
  • Wildermuth SR, Young EE, Were LM. 2016. Chlorogenic acid oxidation and its reaction with sunflower proteins to form green-colored complexes. Comprehensive Reviews in Food Science and Food Safety, 12: 829-843. https://doi.org/10.1111/1541-4337.12213.
  • Wu J, Aluko RE, Muir AD. 2009. Production of anjiyotensin I- converting enzyme inhibitory peptides from defatted canola meal. Bioresource Technology, 100: 5283–5287. https://doi.org/10.1016/j.biortech.2009.03.090.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Tokat İli Hayvansal Atık Biyogaz Potansiyelinin Belirlenmesi

Gazanfer Ergüneş, Burcu Aksüt, Samet Kaya Dursun

Nanoteknoloji Temelli Antimikrobiyal Yüzey Kaplama Teknolojileri ve Potansiyel Uygulama Alanları

Duygu Kışla, Gökhan Gurur Gökmen1

Monokromatik LED Aydınlatmanın Etlik Piliçlerin Performansı, Göğüs Eti Kalitesi, Tibia Kemiği Özellikleri ve İmmunoglobulin G Düzeyine Etkisi

Mustafa Akşit, Tolga Bingöl

Probiyotik Yoğurda Böğürtlen ve Yulaf Kepeği İlavesinin Lactobacillus acidophilus Canlılığı ve Antioksidan Aktivite Üzerine Etkisi

Ecem Akan

Iğdır Yöresinde Organik Arıcılık ve Bal Üretimi Anlayışı

Fatih Araz, Başaran Karademir, İbrsahim Hakkı Kadirhanoğulları

Yozgat İli Arıcılık İşletmelerinin Teknik ve Sosyo-Ekonomik Durumunun İncelenmesi

Bekir Ayyıldız, Merve Ayyıldız, Servet Arslan, Adil Koray Yıldız

Ayçiçek Küspesinden Elde Edilen Protein Hidrolizatlarının Anjiyotensin Dönüştürücü Enzim ve Dipeptidil Peptidaz–IV İnhibisyon Aktiviteleri

Şebnem Şimşek

TR 22 Bölgesi’nde Zeytin ve Zeytinyağı Pazarlama Organizasyonu ve Pazarlama Etkinliklerinin Değerlendirilmesi

Halil Kızılaslan, Serkan Birsin

Coğrafi İşaretli Erbaa Narince Bağ Yaprağı Üreticilerinin Yüksek Sistem Bağcılığı Benimsemesini Etkileyen Faktörlerin Belirlenmesi

Nuray Kızılaslan, Zafer Hızarcı

Bıldırcın Rasyonlarına Sodyum Format İlavesinin Performans, Yumurta Kalite ve Serum Parametreleri Üzerine Etkisi

Osman Olgun, Esra Tuğçe Gül, Seyit Ahmet Gökmen