Ruminantlarda Metan Salınımı, Azaltma Stratejileri ve Ölçüm Yöntemleri

Hayvancılık sektörü, antropojenik sera gazı emisyonlarına katkıda bulunarak iklim değişikliğinde önemli bir rol oynamaktadır. Özellikle ruminant hayvanlarının üretim sistemlerinde sera gazı salınımının azaltılmasına yönelik çalışmalar küresel çapta büyük ilgi görmektedir. Metan gazı selüloz, hemiselüloz, pektin ve nişasta gibi hidrolize olmuş karbonhidratların rumende mikrobiyal fermantasyona uğraması sonucunda oluşmaktadır. Ruminantlar küresel sera gazı emisyonlarının yaklaşık %16’sına, küresel antropojenik metan emisyonlarının da %33’üne katkıda bulunmaktadır. Atmosferdeki metanın yarılanma ömrünün 12,4 yıl olduğu tahmin edilmekte olup radyoaktif etkisi ve küresel ısınma potansiyeli dikkate alındığında bu süre önemlidir. Dünya nüfusunun artması ile birlikte beslenmek için hayvansal ürünlere olan talep yükselecek ve daha fazla hayvansal üretime gereksinim duyulacak, bunun sonucunda metan emisyonuda yükselecektir. Hayvansal üretimi düşürmeden metan emisyonunun azaltılması önem kazanmaktadır. Bu derlemede, ruminant hayvanlardan kaynaklı metan salınımı, azaltma yolları ve ölçüm yöntemleri incelenmiştir.

Methane Emissions, Reduction Strategies and Measurement Methods in Ruminants

The livestock sector plays an important role in climate change by contributing to anthropogenic greenhouse gas emissions. Studies to reduce greenhouse gas emissions in production systems of ruminant animals are of particular interest all over the world. Methane gas is formed as a result of microbial fermentation of hydrolyzed carbohydrates such as cellulose, hemicellulose, pectin and starch in the rumen. Ruminants contribute approximately 16% of global greenhouse gas emissions and 33% of global anthropogenic methane emissions. Considering its radioactive effect and global warming potential, it is estimated that the life of methane in the atmosphere, which is an important factor, will reach its half point in 12.4 years. With the increase in the world's population, the demand for animal products for nutritional purposes will need more animals and therefore total methane emissions will increase. Reducing methane emissions without reducing animal production is of critical value. In this review, methane release from ruminant animals, its reduction ways and measurement methods were examined.

___

  • Archimede H, Eugène M, Magdeleine CM, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, doi: https://doi.org/10.1016/j.anifeedsci.2011.04.003
  • Arslan C, Çelebi E. 2017. Ruminantlarda rumende oluşan metan üretimini azaltmaya yönelik çalışmalar, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, doi: https://doi.org/10.17094/ataunivbd.368903
  • Bradford GE. 1999. Contributions of animal agriculture to meeting global human food demand. Livestock Production Science, doi: https://doi.org/10.1016/S0301-6226(99)00019- 6
  • Belanche A, Fuente GDL, Newbold CJ. 2014. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiology Ecology, doi: https://doi.org/10.1111/1574-6941.12423
  • Beauchemin KA, McGinn SM. 2005. Methane emissions from feedlot cattle fed barley or corn diets. Journal of Animal Science, doi: https://doi.org/10.2527/2005.833653x
  • Beauchemin KA, Kreuzer M, O’Mara F, McAllister. 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, DOI: https://doi.org/10.1071/EA07199
  • Bird SH, Hegarty RS, Woodgate R. 2008. Persistence of defaunation effects on digestion and methane production in ewes. Australian Journal of Experimental Agriculture 48(2) 152-155. https://doi.org/10.1071/EA07298
  • Boadi DA, Wittenberg KM. 2002. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Canadian Journal of Animal Science, doi: https://doi.org/10.4141/A01-017
  • Boadi D, Benchaar C, Chiquette J, Masse D. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, doi: https://doi.org/10.4141/A03-109
  • Bueno ICS, Brandi RA, Franzolin R, Benetel G, Fagundes GM, Abdalla AL, Louvandini H, Muir JP. 2015. In vitro methane production and tolerance to condensed tannins in five ruminant species. Animal Feed Science and Technology, doi: https://doi.org/10.1016/j.anifeedsci.2015.03.008
  • Cottle DJ, Nolan JV, Wiedemann SG. 2011. Ruminant enteric methane mitigation: a review. Animal Production Science, doi: https://doi.org/10.1071/AN10163
  • Fenchel T, Finlay BJ, 2006. The diversity of microbes: resurgence of the phenotype. Philos Trans R Soc Lond B Biol Sci., 361(1475): 1965–1973. doi: 10.1098/rstb.2006.1924
  • Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiology Letters, doi: https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. 2013. Tackling Climate Change Through Livestock. A Global Assessment of Emissions and Mitigation Opportunities. FAO, Rome. ISBN 978-92-5- 107920-1 (print).
  • Giger-Reverdin S, Morand-Fehr P, Tran G. 2003. Literature Survey of The Influence of Dietary Fat Composition on Methane Production in Diary Cattle. Livestock Production Science, doi: https://doi.org/10.1016/S0301-6226(03)00002-2
  • Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. 2014. Anaerobic fungi (phylum neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol., doi: https://doi.org/10. 1111/1574-6941.12383
  • Hegarty RS. 1999. Mechanisms for competitively reducing ruminal methanogenesis. Australian Journal of Agricultural Research, 50(8): 1299–1305. https://doi.org/10.1071/AR9 9007
  • Hegarty RS, Bird SH, Vanselow BA, Woodgate R. 2008. Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. Br. J. Nutr., 100(6): 1220–1227. doi: 10.1017/S0007114508981435.
  • Hill J, McSweeney C, Wright ADG, Bishop-Hurley G, Kalantar- Zadeh K. 2016. Measuring methane production from ruminants. Trends in Biotechnology, doi: https://doi.org/10. 1016/j.tibtech.2015.10.004
  • Hook SE, Wright A, Mcbride BW. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea, 2010: 1-11. doi:10.1155/2010/945785
  • Hristov AN, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A, Dijkstra J, Montes F, Oh J, Kebreab E, Oosting SJ, Gerber PJ, Henderson B, Makkar HPS, Firkins JL. 2013. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal manage-ment mitigation options. Journal of Animal Science, doi: https://doi.org/10.2527/ jas.2013-6585
  • Huhtanen P, Cabezas-Garcia EH, Utsumi S, Zimmerman S. 2015. Comparison of methods to determine methane emissions from dairy cows in farm conditions. Journal of Dairy Science, doi: https://doi.org/10.3168/jds.2014-9118
  • Jami E, Mizrahi I. 2012. Composition and similarity of bovine rumen microbiota across individual animals. Plos One, doi: https://doi.org/10.1371/journal.pone.0033306
  • Jami E, White BA, Mizrahi I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. Plos One, 9(1): e85423, https://doi.org/10.1371/ journal.pone.0085423
  • Janssen PH, Kirs M. 2008. Structure of the Archeal Community of the Rumen. Applied and Environmental Microbiology, doi:https://doi.org/10.1128/AEM.02812-07
  • Janssen PH. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, doi: https://doi.org/ 10.1016/j.anifeedsci.2010.07.002
  • Jin W, Cheng YF, Mao SY, Zhu WY. 2014. Discovery of a novel rumenmethanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by realtime PCR. BMC Microbiology, doi:10.1186/1471-2180-14-104
  • Johnson K, Huyler M, Westberg H, Lamb B, Zimmerman P. 1994. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol., doi: https://doi.org/10.1021/ es00051a025
  • Johnson KA, Johnson DE. 1995. Methane emissions from cattle. Journal of Animal Science, 73(8): 2483–2492. https://doi.org/10.2527/1995.7382483x
  • Kaiyala KJ, Ramsay DS. 2011. Direct animal calorimetry, the underused gold standard for quantifying the fire of life. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. doi: https://doi.org/10.1016/j.cbpa. 2010.04.013
  • Kamra DN, Pawar M, Singh B. 2012. Effect of Plant Secondary Metabolites on Rumen Methanogens and Methane Emissions by Ruminants. Springer Netherlands, pp. 351–370.
  • Karnati SKR, Yu Z, Sylvester JT, Dehority BA, Morrison M, Firkins JL. 2003. Technical note: specific PCR amplification of protozoal 18s rDNA sequences from DNA extracted from ruminal samples of cows. Journal of Animal Science, 81(3): 812–815. https://doi.org/10.2527/2003.813812x
  • Kebreab E, Clark K, Wagner-Riddle C, France J. 2006. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Canadian Journal of Animal Science, 2004, 86(2): 135-158.
  • Kittelmann S, Pinares-Patino CS, Seedorf H, Kirk MR, Ganesh S, Mcewan JC, Janssen PH. 2014. Two different bacterial community types are linked with the low-methane emission trait in sheep. Plos One, 9(7): e103171. https://doi.org/10.1371/journal.pone.0103171
  • Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. 2014. Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, doi: https://doi.org/10.3168/jds.2013-7234
  • Kneebone DG, Dryden GML. 2015. Prediction of diet quality for sheep from faecal characteristics: comparison of near- infrared spectroscopy and conventional chemistry predictive models. Animal Production Science, doi: https://doi.org/10. 1071/AN13252
  • Kocaoğlu Güçlü B, Kara K. 2010. Ruminant beslemede alternatif yem katkı maddelerinin kullanımı: 2. organik asit, yağ asiti, adsorban. Erciyes Univ Vet Fak Derg, 7(1):43-52
  • Kreuzer M, Kirchgessner M, Muller HL. 1986. Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steamflaked maize starch. Animal Feed Science and Technology, doi: https://doi.org/10.1016/0377-8401(86)90114-8
  • Krause DO, Nagaraja TG, Wright ADG, Callaway TR. 2013. Rumen microbiology: leading the way in microbial ecology. Journal of Animal Science, doi: https://doi.org/10.2527/ jas.2012-5567
  • Lassey KR, Pinares-Patino CS, Martin RJ, Molano G, McMillan AMS. 2011. Enteric methane emission rates deter-mined by the SF6 tracer technique: temporal patterns and aver-aging periods. Animal Feed Science and Technology, doi: https://doi.org/10.1016/j.anifeedsci.2011.04.066
  • Laubach J, Grover SPP, Pinares-Patino CS, Molano G. 2014. A micrometeorological technique for detecting small differences in methane emissions from two groups of cattle. Atmospheric Environment, doi: https://doi.org/10.1016/j. atmosenv.2014.09.036
  • Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischr H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J. 2008. Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452(7188): 737–740. doi: 10.1038/nature06870
  • Lovett D, Lovell S, Stack L, Callan J, Finlay M, Conolly J, O’Mara FP. 2003. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, doi: https://doi.org/10.1016/j.livprodsci.2003.09.010
  • Madsen J, Bjerg BS, Hvelplund T, Weisbjerg MR, Lund P. 2010. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livestock Science, doi: https://doi.org/10.1016/j.livsci.2010. 01.001
  • Marino R, Atzori AS, D’Andrea M, Iovane G, Trabalza- Marinucci M, Rinaldi L. 2016. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Ruminanat Research, https://doi.org/10.1016/j.smallrumres. 2015.12.012
  • McAllister TA, Cheng KJ, Okine EK, Mathison GW. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science, 76: 231–243. https://doi.org/10.4141/ cjas96-035
  • McAllister TA, Newbold CJ. 2008. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, doi: https://doi.org/10.1071/ EA07218
  • McMichael AJ, Powles JW, Butler CD, Uauy R. 2007. Food, livestock production, energy, climate change, and health. Lancet, 370(9594): 1253-63. doi:10.1016/S0140- 6736(07) 61256-2
  • McSweeney C, Mackie R. 2012. Commission on genetic resources for food and agriculture. Micro-organisms and ruminant digestion: state of knowledge, trends and future prospects. Background Study Paper, 61. FAO. pp. 1–62.
  • Meral Y, Biricik H. 2013. Ruminantlarda metan emisyonunu azaltmak için kullanılan besleme yöntemleri. VII. Ulusal Hayvan Besleme Kongresi (Uluslararası Katılımlı), Ankara, 26-27 Eylül 2013, pp. 310-316.
  • Morgavi DP, Forano E, Martin C, Newbold CJ. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7): 1024-36. doi: 10.1017/S1751731110000546.
  • Moss AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech., doi: https://doi.org/10.1051/animres:2000119
  • Mould FL, Kliem KE, Morgan R, Mauricio RM. 2005. In vitro microbial inoculum: a review of its function and properties, Animal Feed Science and Technology, doi: https://doi.org/10.1016/j.anifeedsci.2005.04.028
  • Newbold CJ, Lassalas B, Jouany JP. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Letters Applied Microbiology, doi: https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
  • Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS. 2006. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production and energy partitioning in beef cattle. Journal of Animal Science, 84(1): 145–153. doi: 10.2527/2006.841145x.
  • Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld, H. 2013. Greenhouse Gas Emissions from Ruminant Supply Chains. A Global Life Cycle Assessment. FAO, Rome. E-ISBN 978-92-5-107945-4 (PDF). Öztürk H. 2007. Küresel ısınmada ruminantların rolü. Veteriner Hekimler Derneği Dergisi; 78(1):17-22.
  • Patra AK. 2012. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environmental Monitoring Assessment, 184(4): 1929–1952. doi: 10.1007/s10661-011-2090-y
  • Patra AK, Yu Z. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78(12): 4271–4280. doi:10.1128/AEM. 00309-12
  • Patra AK, 2014. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livestock Science, doi: https://doi.org/10.1016/j.livsci.2014.01.007
  • Pinares-Patiño C, Gere J, Williams K, Gratton R, Juliarena P, Molano G, MacLean S, Sandoval E, Taylor G, Koolaard J. 2012. Extending the collection duration of breath samples for enteric methane emission estimation using the SF6 tracer technique. Animals, doi: https://doi.org/10.3390/ani2020275
  • Ranilla MJ, Jouany JP, Morgavi DP. 2007. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Lett. Appl. Microbiol. 45(6):675-80. doi: 10.1111/j.1472- 765X.2007.02251.x.
  • Sharp R, Ziemer CJ, Stern MD, Stahl DA. 1998. Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiology Ecology, 26(1): 71–78. https://doi.org/10.1111/j.1574- 6941.1998.tb01563.x
  • Skillman LC, Toovey AF, Williams AJ, Wright ADG. 2006. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between entodinium populations in sheep offered a hay-based diet. Applied and Environmental Microbiology, 72(1): 200– 206. doi: 10.1128/AEM.72.1.200-206.2006
  • Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL. 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. The Journal of Nutrition, 134(12): 3378–3384. doi: 10.1093/jn/134.12.3378
  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, Haan CD. 2006. Livestock’s Long Shadow: Environmental Issues and Options. Food and Agriculture Organization of the United Nations (FAO), Rome. ISBN 978-92-5-105571-7.
  • Storm IMLD, Hellwing ALF, Nielsen NI, Madsen I. 2012. Methods for measuring and estimating methane emission from ruminants. Animals, doi: https://doi.org/10.3390/ ani2020160
  • Thornton PK. 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B Biological Sciences, 365(1554): 2853–2867. doi: 10.1098/rstb.2010.0134
  • Thornton PK, Herrero M. 2010. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proceedings of the National Academy of Sciences of the United States of America, 107(46): 19667-72. https://doi.org/10.1073/pnas.09128901 07
  • Tymensen L, Barkley C, McAllister TA. 2012. Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. Journal of Microbiological Methods, doi: https://doi.org/10.1016/ j.mimet.2011.09.005
  • Wei YQ, Long RJ, Yang H, Yang HJ, Shen XH, Shi RF, Wang ZY, Du JG, Qi XJ, Ye QH. 2016. Fiber degradation potential of natural co-cultures of neocallimastix frontalis and methanobrevibacter ruminantium isolated from yaks (bos grunniens) grazing on the Qinghai tibetan plateau. Anaerobe, doi: https://doi.org/10.1016/j.anaerobe.2016.03.005
  • Wright ADG, Auckland CH, Lynn HD. 2007. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Applied and Environmental Microbiology, doi: https://doi.org/10.1128/AEM.00103-07
  • Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H. 2000. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of methanomicrobium mobile by fluorescence in situ hybridization. Bioscience Biotechnology Biochemistry, 64(8): 1737–1742. doi: 10.1271/bbb.64.1737
  • Yatoo MI, Kumar P, Dimri U, Sharma MC. 2012. Effects of climate change on animal health and diseases. International Journal of Livestock Research, 2(3): 15-24. doi: http://dx.doi.org/10.5455/ijlr.20120930051739
  • Yurtseven S, Ozturk I. 2009. Influence of two sources of cereals (corn or barley), in free choice feeding on diet selection, milk production indices and gaseous products (CH4 and CO2) in lactating sheep. Asian Journal of Animal and Veterinary Advances, doi: 10.3923/ajava.2009.76.85
  • Zhou M, Hernandez-Sanabria E, Guan LL. 2009. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Applied and Environmental Microbiology, doi: 10.1128/AEM.02815-08
  • Zhou YY, Mao HL, Jiang F, Wang JK, Liu JX, Mcsweeney CS. 2011. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Animal Feed Science and Technology, doi: https://doi.org/10.1016/j.anifeedsci.2011. 04.007
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Bıldırcın Rasyonlarına Sodyum Format İlavesinin Performans, Yumurta Kalite ve Serum Parametreleri Üzerine Etkisi

Osman Olgun, Esra Tuğçe Gül, Seyit Ahmet Gökmen

Ruminantlarda Metan Salınımı, Azaltma Stratejileri ve Ölçüm Yöntemleri

Özlem Boran, Uğur Serbester

Büyüyen Japon Bıldırcınlarında Rasyona Bacillus subtilis İlavesinin Büyüme Performansı, Organ Ağırlıkları ve Bazı Serum Parametrelerine Etkileri

Rukiye Doğan, Yusuf Cufadar, Barışcan Curabay

Yozgat İli Arıcılık İşletmelerinin Teknik ve Sosyo-Ekonomik Durumunun İncelenmesi

Bekir Ayyıldız, Merve Ayyıldız, Servet Arslan, Adil Koray Yıldız

Sürülebilir Kabak Çekirdeği Kreması Üretimi, Besinsel, Tekstürel ve Duyusal Özelliklerinin Belirlenmesi

Rümeysa Hacer Güneş, Muhammed Furkan Yılmaz, Ezgi Demir Özer

Tokat İli Hayvansal Atık Biyogaz Potansiyelinin Belirlenmesi

Gazanfer Ergüneş, Burcu Aksüt, Samet Kaya Dursun

Tüketicilerin Baharat Tüketim Desenine Analitik Yaklaşım: Tokat İli Merkez İlçe Örneği

Arslan Zafer Gürler, Esra Kaplan

Iğdır Yöresinde Organik Arıcılık ve Bal Üretimi Anlayışı

Fatih Araz, Başaran Karademir, İbrsahim Hakkı Kadirhanoğulları

Farklı Protein Düzeylerinde Yemlerle Beslenen Şabut Balığı (Tor grypus) Yavrularının Büyüme Performansları

Suat Dikel, lgın Özşahinoğlu, İbrahim Demirkale, Mustafa Öz

Monokromatik LED Aydınlatmanın Etlik Piliçlerin Performansı, Göğüs Eti Kalitesi, Tibia Kemiği Özellikleri ve İmmunoglobulin G Düzeyine Etkisi

Mustafa Akşit, Tolga Bingöl