Zeytinyağı Üretim Atıklarının Biyolojik Aktiviteleri ve Gıdalarda Kullanım Potansiyeli

Zeytinyağı üretimi sırasında atık su ve prina olmak üzere iki çeşit atık ortaya çıkmaktadır. Bu atıklar yüksek oranda biyokimyasal ve kimyasal oksijen ihtiyacına sahip oldukları için çevreye zararlı etkileri bulunmaktadır. Ancak, bu zararlarının yanısıra zeytinin içerdiği birçok biyoaktif bileşik yağa işleme sırasında atıklara geçmektedir. Hidroksitirozol, tirozol ve oleuropein hem zeytinyağı atık suyunda hem de prinada baskın olarak bulunan biyoaktif bileşenler olup, bu bileşikler insan sağlığını olumlu etkileyen birçok biyoaktiviteye sahiptir. Yapılan bilimsel araştırmalar sonucunda hidroksitirozol, tirozol ve oleuropein bileşiklerinin insan vücudunda antioksidan aktivite, antienflamatuar etki, kardiyoprotektif etki, nöroprotektif etki, kemoprevansiyon özellik, antidiyabetik etki, antimikrobiyal ve antiviral etki gibi çeşitli biyoaktiviteler gösterdiği kanıtlanmıştır. Bu atıklar içerdikleri biyoaktif bileşenler nedeniyle gıda, kozmetik ve ilaç sektörü gibi çeşitli sektörlerde yeniden değerlendirilmektedir. Atık su ve prinanın içerdiği fenolik bileşikler, pektik polisakkaritler ve lifler sayesinde gıda sektöründe doğal koruyucu, antioksidan, fonksiyonel gıda üretiminde zenginleştirici bileşen, ambalaj materyali şeklinde kullanılabileceği yapılan bilimsel çalışmalarla bildirilmiştir. Bu derlemede zeytinyağı üretim atıkları olan atık su ve prinanın üretim yöntemleri, kimyasal ve biyolojik özelliklerinden bahsedilmiş olup bu atıkların gıda sektöründeki kullanım potansiyelini araştıran çalışmalar derlenmiştir.

Biological Activities of Olive Oil Wastes and Their Potential for Use in Foods

During the production of olive oil two types of waste are generated: wastewater and olive pomace. Since these wastes have high biochemical and chemical oxygen needs, they have harmful effects on the environment. However, in addition to these damages, many bioactive compounds in olive are transferred to wastewater and pomace during oil processing. Hydroxytyrosol, tyrosol and oleuropein are bioactive components that are dominantly found in both olive oil wastewater and pomace, and these compounds have many bioactivities that positively affect human health. As a result of scientific studies, it has been proven that hydroxytyrosol, tyrosol and oleuropein compounds exhibit various bioactivities such as antioxidant activity, anti-inflammatory effect, cardioprotective effect, neuroprotective effect, chemoprevention properties, antidiabetic effect, antimicrobial and antiviral effect. These wastes are recycled in various sectors such as food, cosmetics and pharmaceuticals due to the bioactive components they contain. It has been reported by scientific studies that wastewater and pomace contain phenolic compounds, pectic polysaccharides and fibers. These can be used as natural preservatives, antioxidants, food enrichers, packaging materials in the food industry. In this review, the production methods, chemical and biological properties of olive oil wastewater and pomace and studies investigating the use potential of these wastes in the food sector are compiled.

___

  • Achat S, Tomao V, Madani K, Chibane M, Elmaataoui M, Dangles O, Chemat F. 2012. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrasonics Sonochemistry, 19(4): 777- 786. doi: https://doi.org/10.1016/j.ultsonch.2011.12.006
  • Aggoun M, Arhab R, Cornu A, Portelli J, Barkat M. 2016. Olive mill wastewater microconstituents composition according to olive variety and extraction process, Food Chemistry, 209, 72–80 doi: https://doi.org/10.1016/j.foodchem.2016.04.034
  • Andreadou I, Sigala F, Iliodromitis EK, Papaefthimiou M, Sigalas C, Aligiannis N, Kremastinos DT. 2007. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of Molecular and Cellular Cardiology, 42(3): 549-558. doi: 10.1016/j.yjmcc.2014.01. 007
  • Bernini R, Carastro I, Palmini G, Tanini A, Zonefrati R, Pinelli P, Romani A. 2017. Lipophilization of hydroxytyrosol-enriched fractions from Olea europaea L. byproducts and evaluation of the in vitro effects on a model of colorectal cancer cells. Journal of Agricultural and Food Chemistry, 65(31): 6506- 6512. doi: https://doi.org/10.1021/acs.jafc.6b05457
  • Bertelli M, Kiani AK, Paolacci S, Manara E, Kurti D, Dhuli K, Michelini S. 2020. Hydroxytyrosol: A natural compound with promising pharmacological activities. Journal of Biotechnology, 309: 29-33. doi: https://doi.org/10.1016/j. jbiotec.2019.12.016
  • Berthet MA, Angellier-Coussy H, Machado D, Hilliou L, Staebler A, Vicente A, Gontard N. 2015. Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Industrial Crops and Products, 69: 110-122. doi: https://doi.org/10.1016/j.indcrop.2015.01.028
  • Bayaz M. 2016. Natürel Zeytinyağlarındaki Fenolik Bileşiklerin Biyolojik Aktivitesi. Akademik Gıda, 14(4): 441-450. ISSN Print: 1304-7582, Online: 2148-015X
  • Bisignano G, Tomaino A, Cascio RL, Crisafi G, Uccella N, Saija, A. 1999. On the in‐vitro antimicrobial activity of oleuropein and hydroxytyrosol. Journal of Pharmacy and Pharmacology, 51(8): 971-974. doi: https://doi.org/10.1211/0022357991773 258
  • Bogani P, Galli C, Villa M, Visioli F. 2007. Postprandial anti- inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis, 190(1): 181-186. doi: https://doi.org/10. 1016/j.atherosclerosis.2006.01.011
  • Bu Y, Rho S, Kim J, Kim MY, Lee DH, Kim SY, Kim H. 2007. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neuroscience Letters, 414(3): 218-221. doi: https://doi.org/10.1016/j.neulet.2006.08.094
  • Caporaso N, Formisano D, Genovese A. 2018. Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Critical Reviews in Food Science and Nutrition, 58(16): 2829-2841. doi: https://doi.org/10.1080/10408398.2017.1343797
  • Cedola A, Cardinali A, Del Nobile MA, Conte A. 2017. Fish burger enriched by olive oil industrial by‐product. Food Science and Nutrition, 5(4): 837-844. doi: https://doi.org/10.1002/fsn3.461
  • Cedola A, Cardinali A, D’Antuono I, Conte A, Del Nobile MA. 2020. Cereal foods fortified with by-products from the olive oil industry. Food Bioscience, 33: 100490. doi: https://doi.org/10.1016/j.fbio.2019.100490
  • Chandramohan R, Pari L. 2016. Anti-inflammatory effects of tyrosol in streptozotocin-induced diabetic Wistar rats. Journal of Functional Foods, 27: 17-28. doi: https://doi.org/10. 1016/j.jff.2016.08.043
  • Chaves-López C, Serio A, Mazzarrino G, Martuscelli M, Scarpone E, Paparella A. 2015. Control of household mycoflora in fermented sausages using phenolic fractions from olive mill wastewaters. International Journal of Food Microbiology, 207: 49-56. doi: https://doi.org/10.1016/j. ijfoodmicro.2015.04.040
  • Covas MI, Nyyssönen K, Poulsen HE, Kaikkonen J, Zunft HJF, Kiesewetter H, Gaddi A, De la Torre R, Mursu J, Bäumler H, Nascetti S, Salonen JT, Fitó M, Virtanen J, Marrugat J. 2006. The effect of virgin and refined olive oils on heart disease risk factors. Annals of Internal Medicine, 145: 333–341. doi: https://doi.org/10.7326/0003-4819-145-5-200609050-00006
  • Czerwińska M, Kiss AK, Naruszewicz M. 2012. A comparison of antioxidant activities of oleuropein and its dialdehydic derivative from olive oil, oleacein. Food Chemistry, 131(3): 940-947. doi: https://doi.org/10.1016/j.foodchem.2011.09. 082
  • D’Antuono I, Garbetta A, Ciasca B, Linsalata V, Minervini F, Lattanzio VM, Cardinali A. 2016. Biophenols from table olive cv Bella di Cerignola: Chemical characterization, bioaccessibility, and intestinal absorption. Journal of Agricultural and Food Chemistry, 64(28): 5671-5678. doi: 10.1021/acs.jafc.6b01642
  • Diomede L, Rigacci S, Romeo M, Stefani M, Salmona M. 2013. Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PLoS one, 8(3): e58893. doi: https://doi.org/10.1371/journal.pone.0058893
  • De Leonardis A, Macciola V, Lembo G, Aretini A, Ahindra Nag. 2007. Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chem. 100 (3): 998–1004. doi: https://doi.org/10.1016/j. foodchem.2005.10.057
  • De Leonardis A, Macciola V, Iorizzo M, Lombardi SJ, Lopez F, Marconi E. 2018. Effective assay for olive vinegar production from olive oil mill wastewaters. Food Chemistry, 240: 437- 440. doi: https://doi.org/10.1016/j.foodchem.2017.07.159
  • De Marco E, Savarese M, Paduano A, Sacchi R. 2007. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chemistry, 104(2): 858-867. doi: https://doi.org/10.1016/j.foodchem. 2006.10.005
  • De Moraes Crizel T, De Oliveira Rios A, Alves VD, Bandarra N, Moldão-Martins M, Flôres SH. 2018. Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids, 74: 139-150. doi: https://doi.org/10.1016/j. foodhyd.2017.08.007
  • Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P. 2013. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry, 48(10): 1532- 1552. doi: https://doi.org/10.1016/j.procbio.2013.07.010
  • Di Nunzio M, Picone G, Pasini F, Chiarello E, Caboni MF, Capozzi F, Bordoni A. 2020. Olive oil by-product as functional ingredient in bakery products. Influence of processing and evaluation of biological effects. Food Research International, 131: 108940. doi: https://doi.org/10. 1016/j.foodres.2019.108940
  • Domitrović R, Jakovac H, Marchesi VV, Šain I, Romić Ž, Rahelić D. 2012. Preventive and therapeutic effects of oleuropein against carbon tetrachloride-induced liver damage in mice. Pharmacological Research, 65(4): 451-464. doi: https:// doi.org/10.1016/j.phrs.2011.12.005
  • El-Abbassi A, Kiai H, Hafidi A. 2012. Phenolic profile and antioxidant activities of olive mill wastewater, Food Chemistry, 132(1): 406-412 doi: https://doi.org/10.1016/j. foodchem.2011.11.013
  • Esposto S, Taticchi A, Di Maio I, Urbani S, Veneziani G, Selvaggini R, Servili M. 2015. Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chemistry, 176: 184-192. doi: https://doi.org/10.1016/j. foodchem.2014.12.036
  • Fasolato L, Cardazzo B, Balzan S, Carraro L, Taticchi A, Montemurro F, Novelli E. 2015. Minimum bactericidal concentration of phenols extracted from oil vegetation water on spoilers, starters and food-borne bacteria. Italian Journal of Food Safety, 4(2). doi: 10.4081/ijfs.2015.4519
  • Galanakis CM, Tornberg E, Gekas V. 2010. Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT-Food Science and Technology, 43(7): 1018-1025. doi: https://doi.org/10.1016/ j.lwt.2009.09.011
  • Galanakis CM, Tsatalas P, Charalambous Z, Galanakis IM. 2018. Control of microbial growth in bakery products fortified with polyphenols recovered from olive mill wastewater. Environmental Technology and Innovation, 10: 1-15. doi: 10.1016/j.eti.2018.01.006
  • Giovannini C, Straface E, Modesti D, Coni E, Cantafora A, De Vincenzi M, Masella R. 1999. Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. The Journal of Nutrition, 129(7): 1269-1277. doi: https://doi.org/10.1093/jn/129.7.1269
  • Gullón P, Gullón B, Astray G, Carpena M, Fraga-Corral M, Lage, MP, Simal-Gandara J. 2020. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Research International, 109683. doi: 10.1016/j.foodres.2020.109683
  • Hagiwara K, Goto T, Araki M, Miyazaki H, Hagiwara H. 2011. Olive polyphenol hydroxytyrosol prevents bone loss. European Journal of Pharmacology, 662(1-3): 78-84. doi: 10.1016/j.ejphar.2011.04.023
  • Hamden K, Allouche N, Damak M, Elfeki A. 2009. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chemico-biological Interactions, 180(3): 421-432. doi: 10.1016/j.cbi.2009.04.002
  • Hamdi HK, Castellon R. 2005. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochemical and Biophysical Research Communications, 334(3): 769-778. doi: 10.1016/j.bbrc.2005.06.161
  • Han J, Talorete TP, Yamada P, Isoda H. 2009. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 59(1): 45-53. doi: 10.1007/s10616-009-9191-2
  • Hassen I, Casabianca H, Hosni K. 2015. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation–A mini-review. Journal of Functional Foods, 18: 926-940.
  • Jemai H, El Feki A, Sayadi S. 2009. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. Journal of Agricultural and Food
  • Chemistry, 57(19): 8798-8804. doi: 10.1021/jf901280r Karković Marković A, Torić J, Barbarić M, Jakobušić Brala, C. 2019. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 24(10): 2001. doi: https://doi.org/10.3390/molecules24102001
  • Lee-Huang S, Huang PL, Zhang D, Lee JW, Bao J, Sun Y, Huang, PL. 2007. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition. Biochemical and Biophysical Research Communications, 354(4): 872-878. doi: 10.1016/j.bbrc.2007.01.071
  • Lee H, Im SW, Jung CH, Jang YJ, Ha TY, Ahn J. 2016. Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic beta-cell through JNK signaling. Biochem. Biophys. Res. Commun., 469: 748–752. doi: https://doi.org/10.1016/j.bbrc.2015.12.036
  • Leonardis D.A., Macciola V., Iorizzo M., Lombardi J.S., Lopez F., Marconi E., 2018, Effective assay for olive vinegar production from olive oil mill wastewaters, Italy, Food Chemistry, 240(2018) 437–440 doi: 10.1016/j.foodchem.2017.07.159
  • Mancebo-Campos V, Salvador MD, Fregapane G. 2014. Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 40 C) as compared to accelerated and antiradical assays. Food Chemistry, 150: 374-381. doi: 10.1016/j.foodchem.2013. 10.162
  • Martínez N, Herrera M, Frías L, Provencio M, Pérez-Carrión R, Díaz V, Crespo MC. 2019. A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early-stage breast cancer patients receiving adjuvant hormonal therapy: Results of a pilot study. Clinical and Translational Oncology, 21(4): 489-498. doi: 10.1007/s12094-018-1950-0
  • Medina E, De Castro A, Romero C, Brenes M. 2006. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54(14): 4954- 4961. doi: 10.1021/jf0602267
  • Miles EA, Zoubouli P, Calder PC. 2005. Differential anti- inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. Nutrition, 21(3): 389-394. doi: 10.1016/j.nut.2004.06.031
  • Mohagheghi F, Bigdeli MR, Rasoulian B, Hashemi P, Pour MR. 2011. The neuroprotective effect of olive leaf extract is related to improved blood–brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine, 18(2-3): 170-175. doi: 10.1016/j.phymed. 2010.06.007
  • Napolitano A, De Lucia M, Panzella L, d’Ischia M. 2010. The chemistry of tyrosol and hydroxytyrosol: implications for oxidative stress. In Olives and olive oil in health and disease prevention (pp. 1225-1232). Academic Press. doi: 10.1016/B978-0-12-374420-3.00134-0
  • Nunes MA, Pimentel FB, Costa AS, Alves RC, Oliveira MBP. 2016. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innovative Food Science and Emerging Technologies, 35: 139-148. doi: https://doi.org/10.1016/j.ifset.2016.04.016
  • Oktav E, Çatalkaya EÇ, Şengül F. 2003. Zeytinyağı Endüstrisi Atıksularının Kimyasal Yöntemlerle Arıtımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 5(3): 11-21.
  • Pipko G. 2009. U.S. Patent Application No. 12/282,370. Ribeiro TB, Bonifácio-Lopes T, Morais P, Miranda A, Nunes J, Vicente AA, Pintado M. 2020. Incorporation of olive pomace ingredients into yoghurts as a source of fibre and hydroxytyrosol: Antioxidant activity and stability throughout gastrointestinal digestion. Journal of Food Engineering, 110476. doi: https://doi.org/10.1016/j.jfoodeng.2021.110476
  • Ribeiro TB, Oliveira A, Coelho M, Veiga M, Costa EM, Silva S, Pintado M. 2021. Are olive pomace powders a safe source of bioactives and nutrients? Journal of the Science of Food and Agriculture, 101(5): 1963-1978. doi: https//doi.org/10. 1002/jsfa.10812
  • Rietjens SJ, Bast A, De Vente J, Haenen GRMM. 2007. The olive oil antioxidant hydroxytyrosol efficiently protects against the oxidative stress-induced impairment of the NO• response of isolated rat aorta. American Journal of Physiology-Heart and Circulatory Physiology, 292(4): H1931-H1936. doi: https://doi.org/10.1152/ajpheart.00755.2006
  • Robles-Almazan M, Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Rodriguez-Garcia C, Quiles JL, Ramirez-Tortosa M. 2018. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Research International, 105: 654-667. doi: https://doi.org/10.1016/j. foodres.2017.11.053
  • Rubio-Senent F, Rodríguez-Gutiérrez G, Lama-Muñoz A, Fernández-Bolaños J. 2015. Pectin extracted from thermally treated olive oil by-products: Characterization, physico- chemical properties, in vitro bile acid and glucose binding. Food Hydrocolloids, 43: 311-321. doi: https://doi.org/ 10.1016/j.foodhyd.2014.06.001
  • Ruiz-Moreno MJ, Raposo R, Moreno-Rojas JM, Zafrilla P, Cayuela JM, Mulero J, Cantos-Villar E. 2015. Efficacy of olive oil mill extract in replacing sulfur dioxide in wine model. LWT-Food Science and Technology, 61(1): 117-123. doi: https://doi.org/10.1016/j.lwt.2014.11.024
  • Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N. 2008. Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity. Journal of Agricultural and Food Chemistry, 56(20): 9692-9698. doi: https://doi.org/10.1021/jf802050h
  • Sassi AB, Boularbah A, Jaouad A, Walker G, Boussaid A. 2006. A comparison of Olive oil Mill Wastewaters (OMW) from three different processes in Morocco. Process Biochemistry, 41(1): 74-78. doi: https://doi.org/10.1016/j.procbio.2005.03. 074
  • Seçmeler Ö, Üstündağ ÖG. 2015. Zeytinyağı sektörü atık ve yan ürünlerindeki biyoaktif maddelerin değerlendirilmesi. Dünya Gıda Dergisi, 90-98.
  • Serra AT, Matias AA, Nunes AV, Leitão MC, Brito D, Bronze R, Duarte CM. 2008. In vitro evaluation of olive-and grape- based natural extracts as potential preservatives for food. Innovative food science and emerging technologies, 9(3): 311-319.
  • Servili M, Baldioli M, Selvaggini R, Miniati E, Macchioni A, Montedoro GF. 1999. High-performance liquid chromatography evaluation of phenols in olive fruit, virgin olive oil, vegetation waters and pomace and 1D- and 2D- nuclear magnetic resonance characterization. J. Am. Oil Chem. Soc. 76: 873–882.
  • Servili M, Rizzello CG, Taticchi A, Esposto S, Urbani S, Mazzacane F, Di Cagno R. 2011. Functional milk beverage fortified with phenolic compounds extracted from olive vegetation water, and fermented with functional lactic acid bacteria. International Journal of Food Microbiology, 147(1): 45-52. doi: https://doi.org/10.1016/j.ijfoodmicro.2011.03.00 6
  • Simonato B, Trevisan S, Tolve R, Favati F, Pasini G. 2019. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT, 114: 108368. doi: https://doi.org/10.1016/j.lwt.2019.108368
  • Soler A, Romero MP, Macià A, Saha S, Furniss CS, Kroon PA, Motilva MJ. 2010. Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line. Food Chemistry, 119(2): 703-714. doi: https://doi.org/10.1016/j. foodchem.2009.07.017
  • Spizzirri UG, Carullo G, Aiello F, Paolino D, Restuccia D. 2020. Valorisation of olive oil pomace extracts for a functional pear beverage formulation. International Journal of Food Science and Technology. doi: https://doi.org/10.1111/ijfs.14591
  • Tarimsal Ekonomi Ve Politika Geliştirme Enstitüsü (TEPGE), Tarım Ürünleri Piyasaları Zeytinyağı, Temmuz 2020. Available from: https://arastirma.tarimorman.gov.tr/tepge [Accessed 17 January 2021]
  • Toledo E, Salas-Salvadó J, Donat-Vargas C, Buil-Cosiales P, Estruch R, Ros E, Martínez-González MA. 2015.
  • Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: a randomized clinical trial. JAMA Internal Medicine, 175(11): 1752-1760. doi: 10.1001/jamainternmed.2015.4838
  • Troise AD, Fiore A, Colantuono A, Kokkinidou S, Peterson DG, Fogliano V. 2014. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk. Journal of Agricultural and Food Chemistry, 62(41): 10092- 10100. doi: https://doi.org/10.1021/jf503329d
  • Tsagaraki E, Lazarides HN, Petrotos KB. 2007. Olive mill wastewater treatment. In Utilization of By-products and Treatment of Waste in the Food Industry (pp. 133-157).
  • Springer, Boston, MA. ISBN: 978-0387-33511-7 (Online) Tunç M, Ünlü A, Zeytinyağı üretim atıksularının özellikleri, çevresel etkileri ve arıtım Teknolojileri. Nevşehir Bilim ve Teknoloji Dergisi, 2015, 4(2): 44-74. doi: 10.17100/ nevbiltek.211031
  • Veneziani G, Novelli E, Esposto S, Taticchi A, Servili M. 2017. Applications of recovered bioactive compounds in food products. In Olive Mill Waste (pp. 231-253). Academic Press. doi: https://doi.org/10.1016/B978-0-12-805314-0.00011-X
  • Visioli F, Romani A, Mulinacci N, Zarini S, Conte D, Vincieri F. F, Galli C. 1999. Antioxidant and other biological activities of olive mill waste waters. Journal of Agricultural and Food Chemistry, 47(8): 3397-3401. doi: https://doi.org/10.1021/ jf9900534
  • Visioli F. 2012. Olive oil phenolics: Where do we stand? Where should we go? Journal of the Science of Food and Agriculture, 92(10): 2017-2019. doi: https://doi.org/10.1002/ jsfa.5715
  • Visioli F, Franco M, Toledo E, Luchsinger J, Willett WC, Hu FB, Martinez-Gonzalez MA. 2018. Olive oil and prevention of chronic diseases: Summary of an International conference. Nutrition, Metabolism and Cardiovascular Diseases, 28(7): 649-656. doi: https://doi.org/10.1016/j.numecd.2018.04.004
  • Zbakh H, El Abbassi A. 2012. Potential use of olive mill wastewater in the preparation of functional beverages: A review. Journal of Functional Foods, 4(1): 53-65. doi: https://doi.org/10.1016/j.jff.2012.01.002
  • Zhang X, Cao J, Zhong L. 2009. Hydroxytyrosol inhibits pro- inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 379(6): 581. doi: https://doi.org/10.1007/s 00210-009-0399-7
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Nanoteknoloji Temelli Antimikrobiyal Yüzey Kaplama Teknolojileri ve Potansiyel Uygulama Alanları

Duygu Kışla, Gökhan Gurur Gökmen1

Sürülebilir Kabak Çekirdeği Kreması Üretimi, Besinsel, Tekstürel ve Duyusal Özelliklerinin Belirlenmesi

Rümeysa Hacer Güneş, Muhammed Furkan Yılmaz, Ezgi Demir Özer

Bafra Balık Gölleri’nden Tatlı Gölü ve Gıcı Gölü’ndeki Tatlısu Istakozu (Astacus leptodactylus Eschscholtz, 1823)’nun Bazı Popülasyon Parametrelerinin Belirlenmesi

Gülşen Uzun Gören, Sedat Karayücel

Tüketicilerin Baharat Tüketim Desenine Analitik Yaklaşım: Tokat İli Merkez İlçe Örneği

Arslan Zafer Gürler, Esra Kaplan

Farklı Protein Düzeylerinde Yemlerle Beslenen Şabut Balığı (Tor grypus) Yavrularının Büyüme Performansları

Suat Dikel, lgın Özşahinoğlu, İbrahim Demirkale, Mustafa Öz

TR 22 Bölgesi’nde Zeytin ve Zeytinyağı Pazarlama Organizasyonu ve Pazarlama Etkinliklerinin Değerlendirilmesi

Halil Kızılaslan, Serkan Birsin

Probiyotik Yoğurda Böğürtlen ve Yulaf Kepeği İlavesinin Lactobacillus acidophilus Canlılığı ve Antioksidan Aktivite Üzerine Etkisi

Ecem Akan

Yozgat İli Arıcılık İşletmelerinin Teknik ve Sosyo-Ekonomik Durumunun İncelenmesi

Bekir Ayyıldız, Merve Ayyıldız, Servet Arslan, Adil Koray Yıldız

Iğdır Yöresinde Organik Arıcılık ve Bal Üretimi Anlayışı

Fatih Araz, Başaran Karademir, İbrsahim Hakkı Kadirhanoğulları

Coğrafi İşaretli Erbaa Narince Bağ Yaprağı Üreticilerinin Yüksek Sistem Bağcılığı Benimsemesini Etkileyen Faktörlerin Belirlenmesi

Nuray Kızılaslan, Zafer Hızarcı