Probiyotik Mikrororganizmaların Mikroenkapsülasyonu

Probiyotik mikroorganizmalar birçok gıdada mevcut olup aynı zamanda farklı gıda ürünlerinin üretiminde kullanılan insan sağlığına yararlı etkileri olan mikroorganizmalardır. Bu mikroorganizmalar gıdaların işlenmesi, muhafazası ve tüketilmeleri esnasında maruz kaldıkları çeşitli çevre koşulları sonucunda insan gastrointestinal sistemine ya ulaşamamakta ya da ulaştıklarında etkili olamamaktadırlar. Bu amaçla probiyotik mikroorganizmaların gıda işleme, muhafaza ve gastrointestinal sisteme ulaşma basamaklarında canlılıklarını sürdürebilmelerini sağlamak üzere mikroenkapsülasyon tekniği uygulanmaktadır. Bu derlemede, probiyotik mikroorganizmaların mikroenkapsülasyon yöntemleri, kaplama materyalleri, kaplama materyali seçiminde dikkat edilecek hususlar ve probiyotiklerin mikroenkapsülasyonunu etkileyen faktörler ele alınmaktadır. Son yıllarda mikroenkapsülasyon üzerinde oldukça fazla çalışma gerçekleştirilmektedir. Bu çalışmalar daha da ileriye götürülerek probiyotik mikroorganizmaların kullanılabileceği yeni ürünler geliştirilebilecektir.

Microencapsulation of Probiotic Microorganisms

Probiotic bacteria are present in many foods as well as used in the production of different food products, which have beneficial effects on human health. These microorganisms cannot reach to human gastrointestinal tract or cannot be effective because of the environmental conditions during food processing, preservation and consumption. For this purpose, microencapsulation technique is applied to probiotic microorganisms to maintain their viability during food processing, preservation and access to the gastrointestinal system. This review includes methods of microencapsulation of probiotic microorganisms, coating materials, criteria in the selection of coating materials and the factors that influence the effectiveness of probiotic microencapsulation. In recent years, many studies are carried out on microencapsulation. Further studies are needed to develop new products where microencapsulated microorganisms can be used.

___

  • [1] Brownlie K., 2007. Marketing Perspective of Encapsulation Technologies in Food Applications. In: Encapsulation and Controlled Release Technologies in Food Systems, Ed: Lakkis, M., Blacwell Publishing, U.S.A., pp. 83-112
  • [2] Çakır, İ., 2006. Mikroenkapsülasyon Tekniğinin Probiyotik Gıda Üretiminde Kullanımı. Türkiye 9. Gıda Kongresi, 24-26 Mayıs, Bolu.
  • [3] Aqilah, N.S., Akhiar, M., 2010. Enhancement probiotics survival by mikroencapsulation with alginate and prebiotics. Basic Biotech. 6: 13-18.
  • [4] Krasaekoopt, W., Bhandari, B., Deeth, H., 2003. Evaluation of encapsulationtechniques of probiotics for yoghurt. International Dairy Journal 13(1): 3-13.
  • [5] Nazzaro, F., Orlando, P., Fratianni, F., Coppola, R., 2012. Microencapsulation in food science and technology. Current Opinion in Biotechnology 23: 182-186.
  • [6] Wandrey C., Bartkowiak A., Harding S.E., 2009. Materials for Encapsulation In: Zuidam N.J., Nedovic, V.A. (Eds.) Encapsulation Technologies for Food Active Ingredients and Food Processing, Springer: Dordrecht, The Netherlands, p. 31- 100.
  • [7] Lee, J.S., Cha, D.S., Park, H.J., 2004. Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J. Agric. Food Chem. 52: 7300-7305.
  • [8] Krasaekoopt, W., Bhandari, B., Deeth, H., 2004. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal 14: 737-743.
  • [9] Iyer, C., Kailasapathy, K., 2005. Effect of coencapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. Journal of Food Science 70(1): 18-23.
  • [10] Oliveira, A.C., Moretti, T.S., Boschini, J.C.C., Freitas, O., Favaro-Trindade, C.S., 2007. Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. Journal of Microencapsulation 24(7): 685-693.
  • [11] Ann, E.Y., Kim, Y., Oh, S., Imm, J.Y., Park, D.J., Han, K.S., Kim, S.H., 2007. Microencapsulation of Lactobacillus acidophilus ATCC43121 with prebiotic substrates using a hybridisation system. International Journal of Food Science and Technology 42: 411-419.
  • [12] Kim, S.J., Cho, S.Y., Kim, S.H., Song, O.J., Shin, IIS., Cha, D.S., Park, H.J., 2008. Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT 41: 493-500.
  • [13] Mokarram, R.R., Mortazavi, S.A., Habibi Najafi, M.B., Shahidi, F., 2009. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International 42: 1040-1045.
  • [14] Kotikalapudi, B.L., 2009. Characterization and encapsulation of probiotic bacteria using a peaprotein alginate matrix. University of Saskatchewan College of Graduate Studies and Research, Department of Food and Bioproduct Sciences, Master of Science Thesis, Saskatoon, Saskatchewan, Canada, p. 138.
  • [15] Chittiprolu, S., 2009. Effect of Starch Spherulites on Survival of Bifidobacteria in the Presence of Acid or Bile. The Pennsylvania State University The Graduate School, Department of Food Science, Master of Science Thesis, Pennsylvania, U.S.A., p.137.
  • [16] Li, X.Y., Chen, X.G., Cha, D.S., Park, H.J., Liu, C.S., 2009. Microencapsulation of probiotic bacteria with alginate-gelatin and its properties. Journal of Microencapsulation 26(4): 315-324.
  • [17] Sabikhi, L., Babu, R., Thompkinson, D.K., Kapila, S., 2010. Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food and Bioprocess Technology 3(4): 586-593.
  • [18] Teoh, P.L., Mirhosseini, S.H., Mustafa, S., Manap, M.Y.A., 2011. Tolerance of free and encapsulated probiotics towards heat treatment and high sodium concentration. Journal of Food, Agriculture & Environment 9(1): 69-73.
  • [19] Vodnar, D.C., Socaciu, C., 2011. Metabolic activity and behavior of Lactobacillus casei during fermentation and microencapsulation. Bulletin UASVM Agriculture 68(2): 499-506.
  • [20] Rodr´ıguez-Huezo, M.E., Lobato-Calleros, C., Reyes-Ocampo, J.G., Sandoval-Castilla, O., P´erez-Alonso, C., Pimentel-Gonz´alez D.J., 2011. Survivability of entrapped Lactobacillus rhamnosus in liquid- and gel-core alginate beads during storage and simulated gastrointestinal conditions. Revista Mexicana de Ingeniería Química 10(3):353-361.
  • [21] Klemmer, K.J., 2011. Synbiot Encapsulation Employing a Pea Protein-Alginate Matrix. University of Saskatchewan College of Graduate Studies and Research, Department of Food and Bioproduct Sciences, Master of Science Thesis, Saskatoon, Saskatchewan, Canada, p. 116.
  • [22] Dolly, P., Anishaparvin, A., Joseph, G.S., Anandharamakrishnan, C., 2011. Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. Journal of Microencapsulation 28(6): 568-574.
  • [23] Babu, G., Rath, S., Nithyalakshmi, V., 2011. Probiotic Viability of Freeze Dried Symbiotic Microcapsules in Skim Milk Powder at Ambient Storage Condition. Internet Journal of Food Safety 13: 62-68.
  • [24] Lotfipour, F., Mirzaeei, S., Maghsoodi, M., 2012. Preparation and characterization of alginate and psyllium beads containing Lactobacillus acidophilus. The Scientific World Journal doi: 10.1100/2012/680108.
  • [25] Zanjani, M.A.K., Tarzi, B.G., Sharifan, A., Mohammadi, N., Bakhoda, H., Madanipour, M.M., 2012. Microencapsulation of Lactobacillus casei with calcium alginate-resistant starch and evaluation of survival and sensory properties in cream-filled cake. African Journal of Microbiology Research 6(26): 5511-5517.
  • [26] Brinques, G.B., Ayub, M.A.Z., 2011. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated conditions, refrigeration, and yogurt. Journal of Foood Engineering 103: 123-128.
  • [27] Jiménez-Pranteda, M.J., Poncelet, D., NáderMacías, M.E., Arcos, A., Aguilera, M., MonteolivaSánchez,M., Ramos-Cormenzana, A., 2012. Stability of lactobacilli encapsulated in various microbial polymers. Journal of Bioscience and Bioengineering 113(2): 179-184.
  • [28] Sohail, A., Turner, M.S., Coombes, A., Bostrom, T., Bhandari, B., 2011. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. International Journal of Food Microbiology 145: 162-168.
  • [29] Sohail, A., Turner, M.S., Coombes, A., Bostrom, T., Bhandari, B., 2012. The Viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. Food Bioprocess Technology DOI: 10.1007/s11947-012-0938-y.
  • [30] Rodrigues, D., Sousa, S., Gomes A.M., Pintado, M.M., Silva, J.P., Costa, P., Amaral, M.H., RochaSantos, T., Freitas, A.C., 2011. Storage stability of Lactobacillus paracasei as free cells or encapsulated in alginate-based microcapsules in low pH fruit juices. Food Bioprocess Technology 5(7): 2748-2757.
  • [31] Rowley, J.A., Madlambayan, G., Mooney, D.J., 1999. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1): 45-53.
  • [32] Cook, M.T., Trotzis, G., Charalampopoulos, D., Khutoryanskiy, V., 2012. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release 162: 56-67.
  • [33] Burgain, J., Gaiani, C., Linder, M., Scher, J., 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering 104: 467-483.
  • [34] Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., 2000. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yogurt. International Journal of Food Microbiology 62(1-2): 47-55.
  • [35] Sun, W., Griffiths, M.W., 2000. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. International Journal of Food Microbiology 61(1): 17-25.
  • [36] Truelstrup-Hansen, L., Allan-Wojotas, P.M., Jin, Y.L., Paulson, A.T., 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. In milk and simulated gastrointestinal conditions. Food Microbiology 19(1): 35-45.
  • [37] Eren, L., 2009. Sodyum Aljinatla Kapsüllenmiş Bazı Probiyotik Bakterilerin Stirred Tip Meyveli Yoğurtlarda in Vitro Koşullarda Canlı Kalma Sürelerinin Araştırılması. Harran Üniversitesi Fen BilimleriEnstitüsü, Gıda Mühendisliği A.B.D., Yüksek Lisans Tezi, Şanlıurfa, s.86
  • [38] Bielecka, M., E. Biedrzycka and A. Majkowska. 2002. Selection of probiotics and prebiotics for symbiotic and confirmation of their in vivo effectiveness. Food Research International 35: 125-131.
  • [39] Chen, M. J., K. N. Chen and C. W. Lin. 2005. Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. Journal of Food Science 70(5): 260-267.
  • [40] Chen, M.J., Chen, K.N., 2007. Applications of probiotic encapsulation in dairyproducts. In: Lakkis, Jamileh M. (Ed.), Encapsulation and Controlled Release Technologies in Food Systems. WileyBlackwell, USA, pp. 83-107.
  • [41] Argın, S., 2007. Microencapsulation of Probiotic Bacteria in Xanthan-Chitosan Polyelectrolyte Complex Gels. Faculty of the Graduate School of the University of Maryland, Doctor of Philosophy Thesis. U.S.A. p. 82
  • [42] Dinakar, P. and V. V. Mistry. 1994. Growth and viability of Bifidobacterium bifidum in cheddar cheese. Journal of Dairy Science 77: 2854-2864.
  • [43] Fávaro-Trindade, C.S., Grosso, C.R.F., 2002. Microencapsulation of L. acidophilus (La-05) and B. Lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. Journal of Microencapsulation 19(4): 485-494.
  • [44] Chávarri, M., Marañón, I., Ares, R., Ibáñez, F.C., Marzo, F., Villarán, M.D.C., 2010. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology 142(1-2): 185-189.
  • [45] Peniche, C., Argüelles-Monal, W., Peniche, H., Acosta, N., 2003. Chitosan: An attractive biocompatible polymer for microencapsulation. Macromolecular Bioscience 3: 511-520.
  • [46] Anal, A.K., Singh, H., 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Science and Technology 18(5): 240-251.
  • [47] Crittenden, R., Laitila, A., Forsell, P., Matto, J., Saarela, M., Mattila-Sandholm, T., Myllarinen, P., 2001. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies Applied and Environmental Microbiology 67(8): 3469-3475.
  • [48] Livney, Y.D., 2010. Milk proteins as vehicles for bioactives. Current Opinion in Colloid and Interface Science 15(1-2): 73-83.
  • [49] Heidebach, T., Först, P., Kulozik, U., 2009. Microencapsulation of probiotic cells bymeans of rennet-gelation of milk proteins. Food Hydrocolloids 23(7): 1670-1677.
  • [50] Heidebach, T., Först, P., Kulozik, U., 2009. Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. International Dairy Journal 19(2): 77-84.
  • [51] Mortazavian, A., Razavi, S.H., Ehsani, M.R., Sohrabvandi, S., 2007. Principles and methods of microencapsulation of probiotic microorganisms. Iranian Journal of Biotechnology 5(1):3-9
  • [52] Ding, W.K., Shah, N.P., 2009. Effect of various encapsulatingmaterials on the stability of probiotic bacteria. Journal of Food Science 74 (2): 100-107.
  • [53] O'Riordan, K. I., D. Andrews, K. Buckle and P. Conway. 2001. Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. Journal of Applied Microbiology 91: 1059-1066.
  • [54] Cui, J., J. Goh, P. Kim, S. Choi and B. Lee. 2000. Survival and stability of Bifidobacteria loaded in alginate poly-l-Lysine microparticles. International Journal of Pharmaceutics 210: 51-59.
  • [55] Ding, W.K., Shah, N.P., 2007. Acid, bile and heat tolerance of free and microencapsulated probiotic bacteria. Journal of Food Science 72(9): 446-450.
  • [56] Kanmani, P., Kumar, R.S., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V., 2011. Cryopreservation and microencapsulation of a probiotic in alginatechitosan capsules improves survival in simulated gastrointestinal conditions. Biotechnology and Bioprocess Engineering 16(6): 1106-1114.
  • [57] Muthukumarasamy, P., Holley, R.P., 2006. Microbiological and sensory quality of dry fermented sausages containing alginatemicroencapsulated Lactobacillus reuteri. International Journal of Food Microbiology 111(2): 164-169.
  • [58] Muthukumarasamy, P., Holley, R.A., 2007. Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology 24(1): 82- 88.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi