Katı Faz Fermentasyon Yöntemi ile Enzim Üretimi

Bazı özel uygulamalar için sıvı faz içinde gerçekleştirilen derin fermentasyona (DF) alternatif bir yöntem olan katı faz fermentasyonu (KFF) son yıllarda araştırmacıların ve üreticilerin ilgisinden dolayı bilim ve endüstrinin birçok alanında uygulanmaktadır. Genel olarak, KFF yöntemi gıda, yem maddeleri, enzimler, organik asitler, aroma bileşikleri ve antibiyotikler gibi biyoteknoloji kullanılarak elde edilen ticari ürünlerin üretimi için uygundur ve DF yöntemine kıyasla daha ucuz bir işlemdir. Endüstride kullanılan enzimler, KFF yöntemi ile üretilen ürünler arasında yer alan en yaygın gruplardan biridir. Bu derlemede, KFF'nin uygulama alanları ve endüstride yaygın olarak kullanılan enzimlerin bu yöntemle üretimini etkileyen faktörler üzerinde durulmaktadır

Solid State Fermentation for Enzyme Production

As an alternative method to Submerged Fermentation (SmF) for specific applications, Solid State Fermentation (SSF) has been applied in many fields of science and industry due to the interest in SSF from researchers and manufacturers recently. In general, SSF is a well-adapted and cheaper process than SmF for the production of bioproducts such as animal feed, enzymes, organic acids, aroma compounds, antibiotics, etc. Industrial enzymes are one of the most common categories of products from SSF. This review focuses on the SSF process applications and the factors affecting the production of enzymes used extensively in the industry

___

  • [1] Pandey, A., 1992. Recent process developments in solid-state fermentation. Process Biochemistry 27(2): 109–117.
  • [2] Nigam P., Singh D., 1994. Solid-state (substrate) fermentation systems and their applications in biotechnology. Journal of Basic Microbiology 34(6): 405–423.
  • [3] Pandey, A., 2003. Solid-state fermentation. Biochemical Engineering Journal 13(2-3): 81–84.
  • [4] Pandey, A., Soccol, C.R., Mitchell, D., 2000. New developments in solid state fermentation: Ibioprocesses and products. Process Biochemistry 35(10): 1153–1169.
  • [5] Hölker, U., Höfer, M., Lenz, J., 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology 64(2): 175–186.
  • [6] Steinkraus, K.H., 1984. Solid-state (Solid-substrate) food/beverage fermentations involving fungi. Acta Biotechnologica 4(2): 83-88.
  • [7] Longo, M.A., Deive, F.J., Dominguez, A., Sanroman, M.A., 2008. Solid-State Fermentation for Food and Feed Application. In Current Developments in Solid-state Fermentation, Edited by A. Pandey, C. R. Soccol, C. Larroche, Asiatech Publishers, Inc., New Delhi, India, pp. 379-411.
  • [8] Filler, K., 2011. Production of enzymes for the feed industry using solid substrate fermentation. http://hkrota.com/readnews.asp?id=48.
  • [9] Suryanarayan, S., 2003. Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience. Biochemical Engineering Journal 13(2-3): 189-195.
  • [10] Lonsane, B. K., Saucedo-Castaneda, S., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N. P., Ramakrishna, M., Krishnaiah, M. M., 1992. Scale–up strategies for solid state fermentation systems. Process Biochemistry 27: 259–273.
  • [11] Durand, A., 2003. Bioreactor designs for solid state fermentation. Biochemical Engineering Journal 13(2-3): 113–125.
  • [12] Soccol, R.S., Vandenberghe, L.P.S., 2003. Overview of applied solid-state fermentation in Brazil. Biochemical Engineering Journal 13(2-3): 205–218.
  • [13] Ooijkaas, L. P., Weber, F. J., Buitelaar, R., Tramper, J., Rinzema, A., 2000. Defined media and inert supports: Their potential as solid state fermentation production systems. Trends in Biotechnology 18(8): 356-360.
  • [14] Wang, L., Yang, S.T., 2007. Solid State Fermentation and Its Applications. In Bioprocessing for Value-Added Products from Renewable Resources, Edited by S.T. Yang, Elsevier, Oxford OX5 1GB, UK, pp. 465–489.
  • [15] Raimbault, M., 1998. General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology 1(3): 1–15.
  • [16] Rodriguez-Leon, J.A., Soccol, C.R., Pandey, A. and Rodriguez, D.E., 2008. Factors Affecting Solid-state Fermentation. In Current Developments in Solid- state Fermentation, Edited by A. Pandey, C. R. Soccol, C. Larroche, Asiatech Publishers, Inc., New Delhi, India, pp. 26-47.
  • [17] Pandey, A., Selvakumar, P., Soccol, C. R., Nigam, P., 1999. Solid state fermentation for the production of industrial enzymes. Current Science 77: 149– 162.
  • [18] Pandey, A., Larroche, C. and Soccol, C. R. 2008a. General Considerations about Solid-state Fermentation Processes. In Current Developments in Solid-state Fermentation, Edited by A. Pandey, C. R. Soccol, C. Larroche, Asiatech Publishers, Inc., New Delhi, India, pp. 13-25.
  • [19] Singh, S.K., Sczakas, G., Soccol, C.R. and Pandey, A., 2008. Production of Enzymes by Solid-state Fermentation. In Current Developments in Solidstate Fermentation, Edited by A. Pandey, C. R. Soccol, C. Larroche, Asiatech Publishers, Inc., New Delhi, India, pp. 183-204.
  • [20] Pérez-Guerra, N., Torrado-Agrasar, A., LópezMacias, C., Pastrana, L., 2003. Main characteristics and applications of solid substrate fermentation. Electronic Journal of Environmental, Agricultural and Food Chemistry 2(3): 343-350.
  • [21] Rahardjo, Y.S.P., Weber, F.J., Haemers, S., Tramper, J., Rinzema, A., 2005. Aerial mycelia of Aspergillus oryzae accelerate α-amylase production in a model solid-state fermentation system. Enzyme and Microbial Technology 36(7): 900–902.
  • [22] Manpreet, S., Sawraj, S., Sachin, D., Pankaj, S., Banerjee, U.C., 2005. Influence of Process Parameters on the Production of Metabolites in Solid-State Fermentation. Malalaysian Journal of Microbiology 1(2): 1-9.
  • [23] Krishna, C., 2005. Solid-state fermentation systems-an overview. Critical Reviews in Biotechnology 25(1-2): 1-30.
  • [24] Nagel, F. J. I., Tramper, J., Bakker, M. S. N., Rinzema, A., 2000. Model for on-line moisture content control during solid state fermentation. Biotechnology and Bioengineering 72(2): 231-243.
  • [25] Saucedo-Castafieda, G., Lonsane, B.K., Navarro, J.M., Roussos, S., Raimbault, M., 1992. Importance of medium pH in solid state fermentation for growth of Schwanniomyces castellii. Letters in Applied Microbiology 15(4): 164-167.
  • [26] Yadav, J.S., 1988. SSF of wheat straw with alcaliphilic Coprinus. Biotechnology and Bioengineering 31(5): 414-417.
  • [27] Krishna, C., 1999. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresource Technology 69(3): 231–239.
  • [28] Pandey, A., Larroche, C. and Soccol, C.R. 2008b. General and Fundamentals Aspects of SSF. In Current Developments in Solid-state Fermentation, Edited by A. Pandey, C. R. Soccol, C. Larroche, ASIATECH PUBLISHERS, INC., New Delhi, India, pp. 2-12.
  • [29] Hölker, U., Lenz, J., 2005. Solid-state fermentationare there any biotechnological advantages? Current Opinion in Microbiology 8(3): 301–306.
  • [30] Couto, S.R., Sanroman, M.A., 2006. Application of solid-state fermentation to food industry—A review. Journal of Food Engineering 76(3): 291–302.
  • [31] Aguilar, C.N., Gutiérrez-Sánchez, G., RadoBarragán, P.A., Rodríguez-Herrera, R. MartínezHernandez, J.L., Contreras-Esquivel, J.C., 2008. Perspectives of solid state fermentation for production of food enzymes. American Journal of Biochemistry and Biotechnology 4(4): 354-366.
  • [32] Babu, K. R., Satyanarayana, T., 1996. Production of bacterial enzymes by solid state fermentation. Journal of Scientific & Industrial Research 55: 464– 467.
  • [33] Martin, N., Guez, M.A.U., Sette, L.D., Da Silva, R., Gomez, E., 2010. Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid state and submerged fermentation. Microbiology 79(3): 306- 313.
  • [34] Kunamneni, A., Permaul, K., Singh, S., 2005. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Journal of Bioscience and Bioengineering 100(2): 168–171.
  • [35] Soni, S.K., Kaur, A., Gupta, J.K., 2003. A solid state fermentation based bacterial a-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. Process Biochemistry 39(2): 185-192.
  • [36] Hernandez, M.S., Rodriguez, M.R., Guerra, N.P., Roses, R.P., 2006. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. Journal of Food Engineering 73 1): 93–100.
  • [37] Germano, S., Pandey, A., Osaku, C.A., Rocha, S.N., Soccol, C.R., 2003. Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzyme and Microbial Technology 32(2): 246–251.
  • [38] Mitra, P., Chakraverty, R., Chandra, A. L., 1996. Production of proteolytic enzymes by solid state fermentation-an overview. Journal of Scientific & Industrial Research 55: 439–442.
  • [39] Cen, P., Xia, L., 1999. Production of cellulase by solid–state fermentation. Advances in Biochemical Engineering/Biotechnology 65: 70–92.
  • [40] Kang, S.W., Park, Y.S., Lee, J.S., Hong, S.I., Kim, S.W., 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology 91(2): 153–156.
  • [41] Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A., 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology 46(7): 541-549.
  • [42] Jecu, L., 2000. Solid state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products 11(1): 1-5.
  • [43] Damaso, M.C.T., Passianoto, M.A., de Freitas, S.C., Freire, D.M.G., Lago, R.C.A., Couri, S., 2008. Utilization of agroindustrial residues for lipase production by solid-state fermentation. Brazilian Journal of Microbiology 39: 676-681.
  • [44] Hasan, F., Shah, A.A., Hameed, A., 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology 39(2): 235-251.
  • [45] Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S., 2005. Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology 67(5): 577-591.
  • [46] Ghanem, N.B., Yusef, H.H., Mahrouse, H.K., 2000. Production of Aspergillus terreus xylanase in solidstate cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresource Technology 73(2): 113- 121.
  • [47] Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., Zelder, O., 2005. Biotechnological production and applications of phytases. Applied Microbiology and Biotechnology 68(5): 588-597.
  • [48] Pandey, A., Szakacs, G., Soccol, C.R., RodriguezLeon, J.A., Soccol, V.T., 2001. Production, purification and properties of microbial phytases. Bioresource Technology 77(3): 203-14.
  • [49] Ramachandran, S., Patel, A.K., Nampoothiri, K.M., Francis, F., Nagy, V., Szakacs, G., Pandey, A., 2004. Coconut oil cake–a potential raw material for the production of α-amylase. Bioresource Technology 93(2): 169–174.
  • [50] Peixoto-Nogueira, S. C., Sandrim, V. C., Guimaraes, L. H. S. , Jorge, J. A., Terenzi, H. F., Polizeli, M. L. T. M., 2008. Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess and Biosystems Engineering 31(4): 329–334.
  • [51] Vishwanatha, K. S., Appu Rao, A. G., Singh, S.A., 2010. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters. Journal of Industrial Microbiology and Biotechnology 37(2): 129–138.
  • [52] Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A., 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry 40(8): 2689–2694.
  • [53] Cabaleiro, D. R., Rodrıguez-Couto, S., Sanroman, A., Longo, M.A., 2002. Comparison between the protease production ability of ligninolytic fungi cultivated in solid state media. Process Biochemistry 37(9): 1017–1023.
  • [54] Agrawal, D., Patidar, P., Banerjee, T., Patil, S., 2004. Production of alkaline protease by Penicillium sp. under SSF conditions and its application to soy protein hydrolysis. Process Biochemistry 39(8): 977–981.
  • [55] Ikasari, L., Mitchell, D.A., 1996. Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation. Enzyme and Microbial Technology 19(3): 171-175.
  • [56] Aikat, K., Bhattacharyya, B.C., 2000. Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochemistry 35(9): 907–914.
  • [57] Mo, H., Zhang, X., Zuohu, L., 2004. Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochemistry 39(10): 1293-1297.
  • [58] Chahal, D.S., 1985. Solid-state fermentation with Trichoderma reesei for cellulase production. Applied and Environmental Microbiology 49(1): 205- 210.
  • [59] Panagiotou, G., Kekos, D., Macris, B.J., Christakopoulos, P., 2003. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products 18(1): 37-45.
  • [60] Dhouib, A., Hamza, M., Zouari, H., Mechichi, T., Hmidi, R., Labat, M., Martinez, M.J., Sayadi, S., 2005. Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World Journal of Microbiology & Biotechnology 21(8-9): 1415–1423.
  • [61] Levin, L., Herrmann, C., Papinutti, V.L., 2008. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochemical Engineering Journal 39(1): 207–214.
  • [62] Di Luccio, D. M., Capra, F., Ribeiro, N.P., Vargas, G.D.L.P., Freire, D.M.G., Oliveira, D.D., 2004. Effect of temperature, moisture, and carbon supplementation on lipase production by solid-state fermentation of soy cake by Penicillium simplicissimum. Applied Biochemistry and Biotechnology 113(1-3): 173-180.
  • [63] Rodriguez, J.A., Mateos, J.C., Nungaray, J., Gonzalez, V., Bhagnagar, T., Roussos, S., Cordova, J., Baratti, J., 2006. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochemistry 41(11): 2264– 2269.
  • [64] Palma, M.B., Pinto, A.L., Gombert, A.K., Seitz, K.H., Kivatinitz, S.C., Castilho, L.R., Freire, D.M.G., 2000. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Applied Biochemistry and Biotechnology 84-86(1-9): 1137-1145.
  • [65] Falony, G., Armas, J.C., Mendoza, J.C.D., Hernández, J.L.M., 2006. Production of extracellular lipase from Aspergillus niger by solidstate fermentation. Food Technology and Biotechnology 44(2): 235–240.
  • [66] Gaffney, M. Doyle, S., Murphy, R., 2009. Optimization of xylanase production by Thermomyces lanuginosus in Solid State Fermentation. Bioscience, Biotechnology, and Biochemistry 73(12): 2640-2644.
  • [67] Panagiotou, G., Kekos, D., Macris, B.J., Christakopoulos, P., 2003. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products 18(1): 37-45.
  • [68] Antoine, A.A., Jacqueline, D., Thonart, P., 2010. Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Applied Biochemistry and Biotechnology 160(1): 50-62.
  • [69] Betini, J. H. A., Michelin, M., Peixoto-Nogueira, S.C., Jorge, J.A., Terenzi, H.F., Polizeli, M. L. T. M., 2009. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess and Biosystems Engineering 32(6): 819–824.
  • [70] Patil, S.R., Dayanand, A., 2006. Exploration of regional agrowastes for the production of pectinase by Aspergillus niger. Food Technology and Biotechnology 44(2): 289–292.
  • [71] Silva, D., Tokuioshi, K., da Silva Martins, E., Da Silva, R., Gomes, E., 2005. Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochemistry 40(8): 2885–2889.
  • [72] Kuhad, R.C., Kapoor, M., Rustagi, R., 2004. Enhanced production of an alkaline pectinase from Streptomyces sp. RCK-SC by whole-cell immobilization and solid-state cultivation. World Journal of Microbiology & Biotechnology 20(3): 257–263.
  • [73] Chantasartrasamee, K., Na Ayuthaya, D.I., Intarareugsorn, S., Dharmsthiti, S., 2005. Phytase activity from Aspergillus oryzae AK9 cultivated on solid state soybean meal medium. Process Biochemistry 40(7): 2285–2289.
  • [74] Sabu, A., Sarita, S., Pandey, A., Bogar, B., Szakacs, G., Soccol, C.R., 2002. Solid-state fermentation for production of phytase by Rhizopus oligosporus. Applied Biochemistry and Biotechnology 102-103(1-6): 251-260.
  • [75] Roopesh, K., Ramachandran, S., Nampoothiri, K.M., Szakacs, G., Pandey, A., 2006. Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresource Technology 97(3): 506–511.
  • [76] Papagianni, M., Nokes, S.E., Filer, K., 2001. Submerged and solid-state phytase fermentation by Aspergillus niger: effects of agitation and medium viscosity on phytase production, fungal morphology and inoculum performance. Food Technology and Biotechnology 39(4): 319–326.