Ohmik Isıtmanın Gıdalardaki Enzimler ve C Vitamini Üzerine Etkisi

Ohmik ısıtma gıdaların ısıl işlenmesinde kullanılabilen alternatif bir yöntemdir. Ohmik ısıtma ile havuç, portakal suyu ve parçalanmış domateste pektin esteraz, bezelyede peroksidaz ve üzüm suyunda polifenol oksidaz enzimlerinin aktivasyonu azalmıştır. Yapılan çalışmalarda genel olarak, ohmik ısıtmanın geleneksel ısıtma yöntemlerine göre enzimlerin inaktivasyon sürelerini kısalttığı, askorbik asidin daha yüksek oranda korunmasını sağladığı görülmektedir. Bu çalışmada ohmik ısıtmanın gıdalardaki enzim ve C vitamini üzerine etkilerini konu alan çalışmalar derlenmiştir

Effects of Ohmic Heating on Enzymes and Vitamin C in Foods

Ohmic heating is an alternative method can be used as a thermal treatment of foods. In comparison to traditional heat treatment methods, ohmic heating has been reported to reduce the inactivation time for the enzymes and provide more protective effects on the ascorbic acid contents of foods. In this review, the effect of ohmic heating on enzymes and ascorbic acid in foods is presented

___

  • [1] Castro, Macedo, B., Teixeira, J.A., Vicente, A.A., 2004. The effect of electric field on important foodprocessing enzymes: comparison of inactivation kinetics under conventional and ohmic heating. Journal of Food Science 69(9): 696-701.
  • [2] Anderson, D.R., 2008. Ohmic Heating as an Alternative Food Processing Technology. A Report Submitted in Partial Fulfillment of The Requirements for The Degree Master of Science, Food Science Institute College of Agriculture Kansas State University Manhattan, Kansas.
  • [3] Leizerson S., Shimoni, E, 2005. Effect of ultrahightemperature continuous ohmic heating treatment on fresh orange juice. J. Agric. Food Chem. 53: 3519- 3524.
  • [4] Goullieux, A., Pain, J-P., 2005. Ohmic Heating. Emerging Technologies for Food Processing. Edited by Da-Wen Sun, Food Science and Technology International Series, Elsevier Academic Press, 469-505p.
  • [5] Parrott, D., 1992. Use of ohmic heating for aseptic processing of food particulates. Food Tech. 46: 68- 72.
  • [6] Ruan, R, Ye, X., Chen, P., 2002. Ohmic Heating. The Nutrition Handbook for Food Processors. Edited by C. J. K. Henry and C. Chapman.Woodhead Publishing Limited, Cambridge, England, 247-263p., 407-413 p.
  • [7] Bozkurt, H., 2009. The Application, Mathematical Modelling and Exergetic Optimization of Ohmic Cooking in the Köfte Production. MSc Thesis., Institute of Natural and Applied Sciences of Aegean University, Bornova, İzmir.
  • [8] Ramaswamy R., Balasubramaniam V.M., Sastry, S.K., 2005. Ohmic Heating of Foods- Fact Sheet for Food Processors. Columbus, OH: FSE 3-05. Ohio State University Extension Fact Sheet.
  • [9] Icier, F., Yildiz, H., Baysal, T., 2008. Polyphenoloxidase deactivation kinetics during ohmic heating of grape juice, Journal of Food Engineering 85: 410–417.
  • [10] Leizerson, S.; Shimoni, E., 2005. Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. J. Agric. Food Chem. 53: 4012-4018.
  • [11] Yıldız, H., Baysal, T., 2005. Effects of alternative current heating treatment on Aspergillus niger, pectin methylesterase and pectin content in tomato. Journal of Food Engineering 75: 327–332.
  • [12] Icier,F., Yildiz, H., Baysal,T., 2006 Peroxidase inactivation and colour changes during ohmic blanching of pea puree, Journal of Food Engineering 74: 424–429.
  • [13] Lemmens,L., Tibäck E., Svelander, C., Smout,C., Ahrné,L., Langton,M., Alminger,M., Loey A.V.,Hendrickx, M., 2009. Thermal pretreatments of carrot pieces using different heating techniques: Effect on quality related aspects Innovative Food Science and Emerging Technologies 10: 522–529.
  • [14] Lakkakula, N.R., Lima, M., Walker,T., 2003. Rice bran stabilization and rice bran oil extraction using ohmic heating, Bioresource Technology 92: 157– 161.
  • [15] Lima, M., Heskitt, B. F., Burianek, L.L., Nokes, S. E., Sastry, S.K., 1999. Ascorbic acid degradation kinetics during conventional and ohmic heating, J. Food Proc. Eng. 23: 421-434.
  • [16] Pataro, G., Donsi, G., Ferrari, G., 2011. Aseptic processing of apricots in syrup by means of a continuous pilot scale ohmic unit, LWT-Food Science and Technology 44: 1546-1554.
  • [17] Assiry, A., Sastry, S.K., Samaranayake, C., 2003. Degradation kinetics of ascorbic acid during ohmic heating with stainless steel electrodes, Journal of Applied Electrochemistry 33: 187–196.
  • [18] Assiry, A., Sastry, S.K., Samaranayake, C.P., 2005. Influence of temperature, electrical conductivity, power and ph on ascorbic acid degradation kinetics during ohmic heating using stainless steel electrodes. Bioelectrochemistry 68: 7-13.
  • [19] Castro, Teixeira, J.A., Salengke, S., Sastry, S.K., Vicente, A.A., 2004. Ohmic heating of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics, Innovative Food Science and Emerging Technologies 5: 27–36.
  • [20] Pereira, R., Pereira, M., Teixeira, J.A., Vicente, A.A., 2006. Effects of Ohmic Heating Technology in Chemical Properties of Foods; 33rd International Conference of SSCHE ,Tatranske Matliare, Slovakia May 2006, 22–26 p.
  • [21] Vikram, V.B., Ramesh, M.N., Prapulla, S.G., 2005. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods, Journal of Food Engineering 69: 31–40.