İklim Değişikliğinin Bilimsel Temelleri

Yirminci yüzyılın son çeyreğinde en önemli çevre sorunlarından biri olarak uluslararası politik gündemde yer alan insan kaynaklı iklim değişikliği, sağlam bilimsel temellere sahiptir. İklimi etkileyen temel faktörler ve özellikle atmosferin Dünya’nın enerji dengesini belirlemedeki rolü üzerine yapılan bilimsel çalışmaların tarihi ondokuzuncu yüzyıl başlarına kadar uzanmaktadır. İklim değişikliğinin bilimsel temellerini inceleyen bu çalışma kapsamında; insan kaynaklı sera gazı emisyonlarından iklim değişikliğine uzanan neden sonuç ilişkisi temel alınmıştır. Bu amaçla insan kaynaklı iklim değişikliği teorisinin bileşenlerini açıklayan önemli bilimsel çalışmalar incelenmiştir. Çalışmanın sonucunda; bilim insanlarının karbondioksit emisyonlarındaki artışın iklim sistemi üzerinde etkileri olacağını öngördükleri ortaya konulmuştur. Ancak, geçmişin bugünün bilgisine dayalı olarak yorumlanması konusunda ihtiyatlı olunması ve dolayısıyla söz konusu bilimsel çalışmaların, kendi dönemlerinin realitelerine ve koşullarına uygun olacak şekilde değerlendirilmesinin gereği açıktır.

___

  • Ackerman, S. A., & Knox, J. A. (2015). Meteoroloji atmosferimizi anlamak, çeviri ed. Mikdat Kadıoğlu-Sedef Çakır. Nobel Yayınları.
  • Alley, R. B. (2004). Gisp 2 ice core temperature and accumulation data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2004-013, NOAA/NGDC Paleoclimatology Program, Boulder CO-USA: https://www.ncdc.noaa.gov/paleo-search/study/2475.
  • Archer, D. (2012). Global warming: understanding the forecast. John Wiley & Sons.
  • Archer, D., & Pierrehumbert, R. (Eds.). (2011). The warming papers: the scientific foundation for the climate change forecast. John Wiley & Sons.
  • Arrhenius, S. (1896). XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin. Philosophical Magazine and Journal of Science, 41(251), 237-276.
  • Arrhenius, S. (1908). Worlds in the making: the evolution of the universe. Harper & brothers.
  • Bolin, B. (2007). A history of the science and politics of climate change: the role of the intergovernmental panel on climate change.
  • Born, M. (1995). Görelilik kuramı, çev. Celal Çapkın. Evrim Yayın.
  • British Petroleum (BP) (2020). Statiscial review of world energy 2020. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.
  • Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64(275), 223-240.
  • Chamberlin, T. C. (1965). The method of multiple working hypotheses. Science, (148), 754-759.
  • Croll, J. (1864). XIII. On the physical cause of the change of climate during geological epochs. Philosophical Magazine and Journal of Science, 28(4), 121-137.
  • Dessler, A. (2017). Introduction to modern climate change. Cambridge University Press.
  • Fagan, B. (2004). The long summer: how climate changed civilization. Granta Books.
  • Farmer, G. T., & Cook, J. (2013). Climate change science: a modern synthesis: Volume 1-The physical climate (Vol. 1). Springer Science & Business Media.
  • Fleming, J. R. (1998). Historical perspectives on climate change. Oxford University Press.
  • Fleming, J. R. (1999). Joseph Fourier, the ‘greenhouse effect’, and the quest for a universal theory of terrestrial temperatures. Endeavour, 23(2), 72-75.
  • Fourier, J. B. J. (1827 [2011]). On the temperatures of the terrestrial sphere and interplanetary space Archer, D., & Pierrehumbert, R. (Eds.). The warming papers: The scientific foundation for the climate change forecast. John Wiley & Sons.
  • GISTEMP Team (2020). Giss surface temperature analysis (GISTEMP) version 4. NASA Goddard Institute for Space Studies. https://data.giss.nasa.gov/gistemp/.
  • Gramelsberger, G., & Feichter J. (2011). Modelling the climate system: an overview. Climate Change and Policy. Ed by. Gabriele Gramelsberger and Johann Feichter. Berlin. Springer-Verlag Berlin Heidelberg.
  • Graven, H. D. (2015). Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proceedings of the National Academy of Sciences, 112(31), 9542-9545.
  • Graven, H. D., Guilderson, T. P., & Keeling, R. F. (2012). Observations of radiocarbon in CO2 at La Jolla, California, USA 1992–2007: Analysis of the long‐term trend. Journal of Geophysical Research, 117, 1-14
  • Gupta, A. K. (2004). Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Current Science, 87(1), 54-59.
  • Houghton, J. T. (2009). Global Warming: The complete briefing. 4. Edition. Cambridge University Press. Imbrie, J., & Imbrie, J. Z. (1980). Modeling the climatic response to orbital variations. Science, 207(4434), 943-953.
  • Incropera, F. P. (2016). Climate change: a wicked problem: complexity and uncertainty at the intersection of science, economics, politics, and human behavior. Cambridge University Press.
  • Inhofe, J. (2015). Republican senate environment chief uses snowball as prop in climate rant. The Guardian, 26 Şubat 2015.
  • Intergovernmental Panel on Climate Change (IPCC) (1990). Climate change: The ipcc scientific sssessment. https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_I_full_report.pdf.
  • IPCC (2001). TAR Climate change 2001: The scientific basis. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf.
  • IPCC (2007). AR4 Climate change 2007: The physical science basis. https://www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf.
  • IPCC (2013). AR5 Climate change 2013: The physical science basis. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf.
  • IPCC (2018). Global warming of 1.5 oC”, https://www.ipcc.ch/site/assets/uploads/sites/2/2018/07/SR15_SPM_version_stand_alone_LR.pdf.
  • Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., & Fischer, H. (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793-796.
  • Keeling, C. D. (1960). The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12(2), 200-203.
  • Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., & Meijer, H. A. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects. Sio Reference, 1-28
  • Kiehl, J. T., & Trenberth, K. E. (1997). Earth's annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197-208.
  • Krüger, T. (2013). Discovering the Ice Ages: international reception and consequences for a historical understanding of climate. Brill.
  • Luthi, D., Le Floch M., Breiter B., Blunier T., Barnola J. M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K. & Stocker T. F. (2008). High resolution carbon Dioxide concentrations 650,000-800,000 before present. Nature. 453, 379-382.
  • Lyell, C. (1830). Principles of geology, volume I. John Murray.
  • MacDougall, D. (2006). Frozen earth: The once and future story of ice ages. Scribd Edition. University of California Press.
  • Petit, J. R, Raynaud, D., Lorius, C., Jouzel, J., Delaygue, G., Barkov, N. I., & Kotlyakov, V. M. (2000). Historical isotopic temperature record from the Vostok ice core. In Trends: A Compendium of Data on Global Change Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi: 10.3334/CDIAC/cli.006. https://cdiac.ess-dive.lbl.gov/trends/temp/vostok/jouz_tem.htm.
  • Plass, G. N. (1956). The carbon dioxide theory of climatic change. Tellus, 8(2), 140-154.
  • Pouillet, C. S. M. (1846). Memoir on Solar Heat, the Radiative Effects of the Atmosphere, and the Temperature of Space. Translated by. Richard Taylor. Scientific Memoirs 4. (1846) London. Taylor and Francis, 44-90.
  • Rind, D. (2002). The Sun's role in climate variations. Science, 296(5568), 673-677.
  • Rubino M., Etheridge D., Thornton D., Howden R., Allison C., Francey R., Langenfelds R., Steele P., Trudinger C., Spencer D., Curran M., Van Ommen T., &
  • Smith A. (2018). Revised records of atmospheric trace gases CO2, CH4, N2O and d13C-O2 over the last 2000 years from Law Dome, Antarctica. Earth System Science Data Discussions. 11, 473-492. https://www.ncdc.noaa.gov/paleo-search/study/25830.
  • Smil, V. (2003). The Earth's biosphere: Evolution, dynamics, and change. MIT Press.
  • Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122(3166), 415-417.
  • Tans, P. & Keeling R. (2019). Trends in atmospheric carbon dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html.
  • Tyndall, J. (1861). On the absorption and radiation of heat by gases and vapours and the physical connexion of radiation, absorption, and conduction. Philosophical Magazine of Journal of Science, 4, 179-286.
  • United Nations Framework Convention on Climate Change (UNFCCC) (1992). United nations framework convention on climate change. https://unfccc.int/resource/docs/convkp/conveng.pdf.
  • United States Global Change Research Program (USGCRP) (2017). Climate science special report: fourth national climate assessment volume I. https://science2017.globalchange.gov/downloads/CSSR2017_FullReport.pdf.
  • Vallis, G. K. (2012). Climate and the Oceans. Princeton University Press.
  • Weart, S. R. (2008). The discovery of global warming. Harvard University Press.
  • World Meteorological Organization (WMO) (2020). WMO confirms past four years were warmest on record. https://public.wmo.int/en/media/press-release/wmo-confirms-past-4-years-were-warmest-record#:~:text=A%20consolidated%20analysis%20by%20the,baseline%20(1850%2D1900).
  • Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176), 279-283.