SOLUNUMSAL UZUN SÜRELİ FASİLİTASYONUN SİNYAL MEKANİZMALARI

Aralıklıhipoksi,solunumsalmotorçıktıcevabınıngenliğinde kalıcıbirartışolarakbilinenuzunsü relifasilitasyona(LTF) neden olur. Son zamanlarda yapılan çalış- malar solunumsal plastisiteye sebep olan hü creiçi sinyal yolaklarıvebununlailgilideneyselmodellerü zerindeodaklanmıştır. LTF aralıklı hipoksi sonrasında olu- şurken,sü reklihipoksiileoluşmaz.Birçokhü creiçisinyalyolaklarının solunumsal LTF'e sebep olabildiği aydınlatılmıştır.Bu yolaklar temel olarak serotonin bağımlıGq ('Q' yolağı) ve serotoninden bağımsız Gs ('S' yolağı)olarakifadeedilenmetabolikproteinçiftireseptö rleriniaktiveeder.LTFoluşumunanedenolanyolakların biyolojikö nemihenü zkesinolarakbilinmemektedir.Bu derlemede LTF oluşumuna neden olan sinyal yolaklarıvebuyolaklararasındakietkileşimlertartışılmıştır.Bu mekanizmaları veya etkileşimleri anlamak, solunumyetmezliğivediğermotorfonksiyonbozukluklarıolan hastaların tedavisinde yeni yö ntemleringeliş- mesinekatkısağlayacaktır.

SIGNALLING MECHANISMS OF VENTILATORY LONG TERM FACILITATION

Intermittent hypoxia elicits long term facilitation (LTF) known as a persistent augmentation of respiratory motor output. Considerable recent progress has been made toward an understanding of the mechanisms of this potentially model of respiratory plasticity. LTF is elicited by intermittent but not sustained hypoxia. Multiple intracellular pathways have been elucidated that are capable of giving rise to respiratory LTF. They mainly activate the metabolic receptors coupled to Gq ( Q pathway) and Gs ( S pathway) proteins. The biological signi icance of multiple pathways to LTF is still not clearly known. This review will discuss the possibility that interactions between pathways confer properties to LTF, including pattern sensitivity. Understanding these mechanisms and their interactions may enable us to understand plasticity as a treatment for patients with ventilatory impairment or other motor de icits.

___

  • 1. Mitchell GS, Johnson SM. Neuroplasticity in respiratory motor control. J Appl Physiol 2003; 94: 358 –374.
  • 2. Doyle JC, Csete M. Architecture, constraints, and behavior. Proceedings of the National Academy of Sciences 2011; 108: 15624–15630.
  • 3. Prabhakar NR. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological signi icance. Respiratory Physiology & Neurobiology 2011; 178: 375–380.
  • 4. Dale-Nagle EA, Hoffman MS, MacFarlane PM, et al. Spinal plasticity following intermittent hypoxia: implications for spinal injury. Annals N Y Acad Sci 2010; 1198: 252–259.
  • 5. Morris KF, Baekey DM, Nuding SC, et al. Invited review: neural network plasticity in respiratory control. Journal of Applied Physiology 2003; 94: 1242–1252.
  • 6. Bach KB, Mitchell GS. Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent. Respiratory Physiology & Neurobiology 1996; 104: 251–260.
  • 7. Baker TL, Mitchell GS. Episodic but not continuous hypoxia elicits long-term facilitation of phrenic motor output in rats. J Physiol 2000; 529: 215– 219.
  • 8. McCrimmon DR, Dekin MS, Mitchell GS. Glutamate, GABA, and serotonin in ventilatory control. In: Dempsey JA, Pack AI (eds), Lung Biology in Health and Disease. Regulation of Breathing: Central Nervous System, New York: Marcel Dekker, 1995; 79: 51–218.
  • 9. Fuller DD, Bach KB, Baker TL, et al. Long term facilitation of phrenic motor output. Respiratory Physiology 2000; 121: 135–146.
  • 10. Hayashi F, Coles SK, Bach KB, et al. Time- dependent phrenic nerve responses to carotid afferent activation: intact vs. decerebellate rate. The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 1993; 265: 811–819.
  • 11. Bach KB, Kinkead R, Mitchell GS. Post-hypoxia frequency decline in rats: sensitivity to repeated hypoxia and alpha2-adrenoreceptor antagonism. Brain Res. 1999; 817: 25-33.
  • 12. Devinney MJ, Huxtable AG, Nichols NL, et al. Hypoxia-induced phrenic long-term facilitation: emergent properties. Ann NY Acad Sci 2013; 1279: 143–153.
  • 13. Millhorn DE, Eldridge FL, Waldrop TG. Prolonged stimulation of respiration by a new central neural mechanism. Respiratory Physiology 1980; 41: 87– 103.
  • 14. Fregosi RF, Mitchell GS. Long-term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats. J Physiol 1994; 477: 469-479.
  • 15. Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev 1994; 74: 543- 594.
  • 16. Mitchell GS, Baker TL, Nanda SA, et al. Invited review: Intermittent hypoxia and respiratory plasticity. Journal of Applied Physiology 2001; 90: 2466- 2475.
  • 17. Xing T, Pilowsky PM. Acute intermittent hypoxia in rat in vivo elicits a robust increase in tonic sympathetic nerve activity that is independent of respiratory drive. J Physiol 2010; 588: 3075-3088.
  • 18. McGuire M, Zhang Y, White DP, et al. Effect of hypoxic episode number and severity on ventilatory long-term facilitation in awake rats. Journal of Applied Physiology 2002; 93: 2155-2161.
  • 19. Cao KY, Zwillich CW, Berthon-Jones M, et al. Increased normoxic ventilation induced by repetitive hypoxia in conscious dogs. Journal of Applied Physiology 1992; 73: 2083-2088.
  • 20. Turner DL, Mitchell GS. Long-term facilitation of ventilation following repeated hypoxic episodes in awake goats. J Physiol 1997; 499: 543-450.
  • 21. Mitchell GS, Powell FL, Hopkins SR, et al. Time domains of the hypoxic ventilatory response in awake ducks: episodic and continuous hypoxia. Respiratory Physiology 2001; 124: 117-128.
  • 22. Sokolowska B, Pokorski M. Ventilatory augmentation by acute intermittent hypoxia in the rabbit. J Physiol Pharmacol 2006; 57: 341-347.
  • 23. Olson Jr EB, Bohne CJ, Dwinell MR, et al. Ventilatory long-term facilitation in unanesthetized rats. Journal of Applied Physiology 2001; 91: 709-716.
  • 24. Terada J, Nakamura A, Zhang W, et al. Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. Journal of Applied Physiology 2008; 104: 499-507.
  • 25. McEvoy RD, Popovic RM, Saunders NA, et al. Effects of sustained and repetitive isocapnic hypoxia on ventilation and genioglossal and diaphragmatic EMGs. Journal of Applied Physiology 1996; 81: 866- 875.
  • 26. Jordan AS, Catcheside PG, O'Donoghue FJ, et al. Long-term facilitation of ventilation is not present during wakefulness in healthy men or women. Journal of Applied Physiology 2002; 93: 2129-2136.
  • 27. Morelli C, Badr MS, Mateika JH. Ventilatory responses to carbon dioxide at low and high levels of oxygen are elevated after episodic hypoxia in men compared with women. Journal of Applied Physiology 2004; 97: 1673-1680.
  • 28. Mateika JH, Mendello C, Obeid D, Badr MS. Peripheral chemore lex responsiveness is increased at elevated levels of carbon dioxide after episodic hypoxia in awake humans. Journal of Applied Physiology 2004; 96: 1197-1205.
  • 29. Babcock M, Shkoukani M, Aboubakr SE, et al. Determinants of long-term facilitation in humans during NREM sleep. Journal of Applied Physiology 2003; 94: 53-59.
  • 30. Babcock MA, Badr MS. Long-term facilitation of ventilation in humans during NREM sleep. Sleep 1998; 21: 709-716.
  • 31. Aboubakr SE, Taylor A, Ford R, et al. Long-term facilitation in obstructive sleep apnea patients during NREM sleep. Journal of Applied Physiology 2001; 91: 2751-2757.
  • 32. Harris DP, Balasubramaniam A, Badr MS, et al. Long -term facilitation of ventilation and genioglossus muscle activity is evident in the presence of elevated levels of carbon dioxide in awake humans. The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 2006; 291: 1111-1119.
  • 33. Wadhwa H, Gradinaru C, Gates GJ, et al. Impact of intermittent hypoxia on long-term facilitation of minute ventilation and heart rate variability in men and women: Do sex differences exist? Journal of Applied Physiology 2008; 104: 1625-1633.
  • 34. Lee DS, Badr MS, Mateika JH. Progressive augmentation and ventilatory long-term facilitation are enhanced in sleep apnoea patients and are mitigated by antioxidant administration. J Physiol 2009; 587: 5451-5467.
  • 35. Powell FL, Milsom WK, Mitchell GS. Time domains of the hypoxic ventilatory response. Respiratory Physiol 1998, 112: 123-134.
  • 36. Mitchell GS, Terada J. Should we standardize protocols and preparations used to study respiratory plasticity? Respiratory Physiology & Neurobiol 2011; 177: 93-97.
  • 37. Pamenter ME, Powell FL. Signalling mechanisms of long term facilitation of breathing with intermittent hypoxia. F1000 Prime Rep 2013; 5: 23-31.
  • 38. Morris KF, Gozal D. Persistent respiratory changes following intermittent hypoxic stimulation in cats and human beings Respiratory Physiol & Neurobiol 2004; 140: 1-8.
  • 39. Mateika JH, Sandhu KS. Experimental protocols and preparations to study respiratory long term facilitation Respiratory Physiol & Neurobiol 2011; 176: 1-11.
  • 40. McKay LC, Janczewski WA, Feldman JL. Episodic hypoxia evokes long-term facilitation of genioglossus muscle activity in neonatal rats. J Physiol 2004; 557: 13-18.
  • 41. Dwinell MR, Janssen PL, Bisgard GE. Lack of long- term facilitation of ventilation after exposure to hypoxia in goats. Respiratory Physiol 1997; 108: 1- 9.
  • 42. Baker-Herman TL, Mitchell GS. Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis. J Neurosci 2002; 22: 6239-6246.
  • 43. Fuller DD, Zabka AG, Baker TL, Mitchell GS. Phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxia. Journal of Applied Physiology 2001; 90: 2001-2006.
  • 44. Baker TL, Fuller DD, Zabka AG, Mitchell GS. Respiratory plasticity: Differential actions of continuous and episodic hypoxia and hypercapnia. Respiratory Physiol 2001; 129: 25-35.
  • 45. Zhang Y, McGuire M, White DP, Ling L. Serotonin receptor subtypes involved in vagus nerve stimulation-induced phrenic long-term facilitation in rats. Neurosci Lett 2004; 363: 108-111.
  • 46. McGuire M, Zhang Y, White DP, et al. Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats. The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 2004; 286: 334-341.
  • 47. Ling L, Fuller DD, Bach KB, et al. Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci 2001; 21: 5381-5388.
  • 48. Brodin E, Linderoth B, Goiny M, et al. In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei. Brain Res 1990; 535: 227-236.
  • 49. Morris KF, Arata A, Shannon R, et al. Inspiratory drive and phase duration during carotid chemoreceptor stimulation in the cat: medullary neurone correlations. J Physiol 1996; 491: 241-259.
  • 50. Richter DW, Schmidt-Garcon P, Pierre iche O, et al. Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats. J Physiol 1999; 514: 567-578.
  • 51. Kinkead R, Bach KB, Johnson SM, et al. Plasticity in respiratory motor control: intermittent hypoxiaw and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comparative Biochemistry and Physiol Part A: Molecular & Integrative Physiol 2001; 130: 207-218.
  • 52. Erickson JT, Millhorn DE. Hypoxia and electrical stimulation of the carotid sinus nerve induce Foslike immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem. J Comp Neurol 1994; 348: 161-182.
  • 53. Erickson JT, Millhorn DE. Fos-like protein is induced in neurons of the medulla oblongata after stimulation of the carotid sinus nerve in awake and anesthetized rats. Brain Res 1991; 567: 11-24.
  • 54. Baker-Herman TL, Fuller DD, Bavis RW, et al. BDNF is necessary and suf icient for spinal respiratory plasticity following intermittent hypoxia. Nature Neuroscience 2004; 7: 48-55.
  • 55. Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 2003; 26: 239-266.
  • 56. Sanchez-Perez A, Llansola M, Cauli O, et al. Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum 2005; 4: 162-170.
  • 57. Llansola M, Sanchez-Perez A, Cauli O, et al. Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum 2005; 4: 154-161.
  • 58. Lisman J, Raghavachari S. A uni ied model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006; 356: 5-11.
  • 59. Wilkerson JE, Mitchell GS. Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Exp Neurol 2009; 217: 116-123.
  • 60. Kishino A, Nakayama C. Enhancement of BDNF and activated-ERK immunoreactivity in spinal motor neurons after peripheral administration of BDNF. Brain Res 2003; 964: 56-66.
  • 61. Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66: 105-143.
  • 62. Peng YJ, Prabhakar NR. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol 2004; 96: 1236-1242.
  • 63. Neverova NV, Saywell SA, Nashold LJ, et al. Episodic stimulation of alpha1-adrenoreceptors induces protein kinase C-dependent persistent changes in motoneuronal excitability. J Neurosci 2007; 27: 4435-4442.
  • 64. Hoffman MS, Nichols NL, Macfarlane PM, et al. Phrenic longterm facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis. Journal of Applied Physiology 2012; 113:1184-1193.
  • 65. Bockaert J, Claeysen S, Becamel C, et al. Neuronal 5- HT metabotropic receptors: ine-tuning of their structure, signaling, androles in synaptic modulation. Cell Tissue Res 2006; 326: 553-572.
  • 66. Dale-Nagle EA, Hoffman MS, MacFarlane PM, et al. Multiple pathways to long-lasting phrenic motor facilitation. Advances in Experimental Medicine and Biology 2010; 669: 225-230.
  • 67. Golder FJ, Ranganathan L, Satriotomo I, et al. Spinal adenosine A2a receptor activation elicits longlasting phrenic motor facilitation. J Neurosci 2008; 28: 2033-2042.
  • 68. Hoffman MS, Golder FJ, Mahamed S, et al. Spinal adenosineA2(A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia. J Physiol 2010; 588: 255-266.
  • 69. Hoffman MS, Mitchell GS. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation. J Physiol 2011; 589: 1397-1407.
  • 70. Gourine AV, Llaudet E, Dale N, et al. Release of ATP in the ventral medulla during hypoxia in rats: Role in hypoxic ventilatory response. J Neurosci 2005; 25: 1211–1218.
  • 71. Martı́n ED, Fernández M, Perea G, et al. Adenosine released by astrocytes contributes to hypoxiainduced modulation of synaptic transmission. Glia 2007; 55: 36–45.
  • 72. Phillis JW, O’Regan MH, Perkins LM. Adenosine 5’- triphosphate release from the normoxic and hypoxic in vivo rat cerebral cortex. Neurosci Lett 1993; 151: 94–96.
  • 73. Wallman-Johansson A, Fredholm BB. Release of adenosine and other purines from hippocampal slices stimulated electrically or by hypoxia/ hypoglycemia. Effect of chlormethiazole. Life Sci 1994; 55: 721–728.
  • 74. Dale N, Pearson T, Frenguelli BG. Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 2000; 526: 143–155.
  • 75. Frenguelli BG, Llaudet E, Dale N. High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J Neurochem 2003; 86: 1506–1515.
  • 76. Parkinson FE, Xiong W, Zamzow CR. Astrocytes and neurons: Different roles in regulating adenosine levels. Neurol Res 2005; 27: 153–160.
  • 77. Nichols NL, Dale EA, Mitchell GS. Severe acute intermittent hypoxia elicits phrenic long-term facilitation by a novel adenosine-dependent mechanism. Journal of Applied Physiology 2012; 112: 1678- 1688.
  • 78. Roy AA, Nunn C, Ming H, et al. Up regulation of endogenous RGS2 mediates cross-desensitization between Gs and Gq signaling in osteoblasts. J Biol Chem 2006; 281: 32684-32693.
  • 79. Yatani A, Okabe K, Codina J, et al. Heart rate regulation by G proteins acting on the cardiac pacemaker channel. Science 1990, 249: 1163-1166.
  • 80. Shuman SL, Capece ML, Baghdoyan HA, et al. Pertussis toxinsensitive G proteins mediate carbacholinduced REM sleep and respiratory depression. Am J Physiol 1995; 269: 308-317.
  • 81. Yevenes GE, Moraga-Cid G, RomoX, et al. Activated G protein alpha s subunits increase the ethanol sensitivity of human glycine receptors. J Pharmacol Exp Ther 2011; 339: 386-393.
  • 82. Yevenes GE, Peoples RW, Tapia JC, et al. Modulation of glycine-activated ion channel function by G- protein betagamma subunits. Nature Neurosci 2003; 6: 819-824.
  • 83. Hartmann J, Blum R, Kovalchuk Y, et al. Distinct roles of Galpha(q) and Galpha11 for Purkinje cell signaling and motor behavior. J Neurosci 2004; 24: 5119-5130.
  • 84. Niebert M, Vogelgesang S, Koch UR, et al. Expression and function of serotonin 2A and 2B receptors in the mammalian respiratory network. PLoS One 2011; 6: e21395.
  • 85. McCrimmon DR, Smith JC, Feldman JL. Involvement of excitatory amino acids in neurotransmission of inspiratory drive to spinal respiratory motoneurons. J Neurosci 1989; 9: 1910-1921.
  • 86. McGuire M, Zhang Y, White DP, Ling L. Phrenic long- term facilitation requires NMDA receptors in the phrenic motonucleus in rats. J Physiol 2005; 567: 599-611.
  • 87. McGuire M, Liu C, Cao Y, et al. Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats. J Appl Physiol 2008; 105: 942-950.
  • 88. Dale-Nagle EA, Satriotomo I, Mitchell GS. Spinal vascular endothelial growth factor induces phrenic motor facilitation via extracellular signal-regulated kinase and Akt signaling. J Neurosci 2011; 31: 7682- 7690.
  • 89. Dale EA, Satriotomo I, Mitchell GS. Cervical spinal erythropoietin induces phrenic motor facilitation via extracellular signalregulated protein kinase and Akt signaling. J Neurosci 2012; 32: 5973-5983.
  • 90. Dale EA, Mitchell GS. Spinal vascular endothelial growth factor (VEGF) and erythropoietin (EPO) induced phrenic motor facilitation after repetitive acute intermittent hypoxia. Respiratory Physiol & Neurobiology 2013; 185: 481-488.
  • 91. Satriotomo I, Dale EA, Dahlberg JM, et al. Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus. Exp Neurol 2012; 237: 103-115.
  • 92. McGuire M, Ling L. Ventilatory long-term facilitation is greater in 1- vs. 2-mo-old awake rats. J Appl Phy-siol 2005; 98: 1195-1201.
  • 93. Zabka AG, Behan M, Mitchell GS. Long term facilitation of respiratory motor output decreases with age in male rats. J Physiol 2001; 531: 509-514.
  • 94. Zabka AG, Mitchell GS, Behan M. Ageing and gonadectomy have similar effects on hypoglossal long- term facilitation in male Fischer rats. J Physiol 2005; 563: 557-568.
  • 95. Nelson NR, Bird IM, Behan M. Testosterone restores respiratory long term facilitation in old male rats by an aromatase-dependent mechanism. J Physiol 2011; 589: 409-421.
  • 96. Zabka AG, Mitchell GS, Behan M. Conversion from testosterone to oestradiol is required to modulate respiratory long-term facilitation in male rats. J Physiol 2006; 576: 903-912.
  • 97. Zabka AG, Behan M, Mitchell GS. Time-dependent hypoxic respiratory responses in female rats are in luenced by age and by the estrus cycle. Journal of Applied Physiology 2001; 91: 2831-2838.
  • 98. Zabka AG, Mitchell GS, Olson EB, et al. Chronic intermittent hypoxia enhances respiratory long-term facilitation in geriatric female rats Journal of Applied Physiology 2003; 95: 2614-2623.
  • 99. Behan M, Zabka AG, Mitchell GS. Age and gender effects on serotonin-dependent plasticity in respiratory motor control. Respiratory Physiol & Neurobiol 2002; 131: 65-77.
  • 100.Baker-Herman TL, Bavis RW, Dahlberg JM, et al. Differential expression of respiratory long-term facilitation among inbred rat strains. Respiratory Physiology & Neurobiology 2010; 170: 260-267.
  • 101.Nakamura A, Olson EB, Terada J, et al. Sleep state dependence of ventilatory long-term facilitation following acute intermittent hypoxia in Lewis rats. J Appl Physiol 2010; 109: 323-331.
  • 102.Fuller DD, Baker TL, Behan M, et al. Expression of hypoglossal long-term facilitation differs between substrains of Sprague-Dawley rat. Physiological Genomics 2001; 4: 175-181.
Sağlık Bilimleri Dergisi-Cover
  • ISSN: 1018-3655
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1993
  • Yayıncı: Prof.Dr. Aykut ÖZDARENDELİ
Sayıdaki Diğer Makaleler

SOLUNUMSAL UZUN SÜRELİ FASİLİTASYONUN SİNYAL MEKANİZMALARI

Sami AYDOĞAN, Sacide YILDIZ, K. Erdem BAŞARAN

SOSYAL İZOLASYON OLUŞTURULAN GENÇ ERKEK SIÇANLARDA GİNKGO BİLOBA EKSTRESİ'NİN ÖĞRENMEYE ETKİSİ

Fatoş DENEME, Cem SÜER, Meral AŞÇIOĞLU

DIAGNOSIS of MYCOPLASMA HAEMOFELIS and CANDIDATUSMYCOPLASMAn HAEMOMINUTUM USING PCR ASSA in CATS

Öznur ASLAN, Ilknur BEKDİK KARACA, Tuğrul ATALAY

BUZAĞILARDA GÖZLENEN EKLEM YANGILARININ DÜŞÜK FREKANSLI LAZER VE DMSO İLE SAĞALTIMININ KARŞILAŞTIRILMASI

Öznur ASLAN, Vehbi GÜNEŞ, İlknur BEKDİK KARACA, Nusret APAYDIN, Zafer DOĞAN, Murat KİBAR, Gültekin ATALAN

SAĞLIK ÇALIŞANLARINA UYGULANAN ŞİDDET: KİLİS İLİ ÖRNEĞİ

Emre ATAY, Erhan KILINÇ, Tuğba DEMİROĞLU

MARSUPYALİZASYON VE ENÜKLEASYON SONRASINDA OLUŞAN ALVEOL DEFEKTİN OTOJEN GREFT VE DENTAL İMPLANT İLE REKONSTRÜKSİYONU: OLGU SUNUMU

Hakan OCAK, Emrah SOYLU, Hasan Önder GÜMÜŞ, Hasan H. KOCAAĞAOĞLU, Osman A. ETÖZ, Alper ALKAN

ANNELERİN ANNE SÜTÜ SAĞMA KONUSUNDAKİ BİLGİ VE DAVRANIŞLARI: TANIMLAYICI BİR ÇALIŞMA

Müge YILMAZ, İskender GÜN, Habibe ŞAHİN, Mualla AYKUT, Elçin BALCI, Mehmet SAĞIROĞLU

EBELİK VE HEMŞİRELİK ÖĞRENCİLERİNİN DOĞUM ŞEKLİ TERCİHLERİ VE ETKİLEYEN FAKTÖRLER

Hilmiye AKSU, Sevgi ÖZSOY

ÇOCUKLARDA CEP TELEFONU KULLANIMI

Handan BOZTEPE, Gizem KERİMOĞLU

LABRADOR KÖPEK YAVRULARININ MAMALARINA İLAVE EDİLEN ÇİNKONUN ETKİLERİ

Abdullah Emre SARIKAYA, Osman KÜÇÜK