Küresel iklim değişikliklerinin böcekler açısından değerlendirilmesi

Atmosferdeki CO2 ve O2 gibi gazların miktarlarmdaki artışlar küresel ölçekte dünyamızı farklı oranlarda etkilemektedir. Uluslararası sözleşmelerin de devreye girmesiyle bu gazların ekosistem üzerindeki etkileri daha net bir şekilde anlaşılmaya başlanmıştır. Ekosistemin önemli elemanlarından olan böcekler bu gazlardan doğrudan ve dolaylı olarak etkilenmektedir. Gelecekteki iklim senaryoları, küresel ısınmaya yol açan gazların miktarlarmdaki artışların ekosistem ve ekosistem unsurlarını olumsuz bir şekilde etkileyeceğini göstermektedir. Bu bağlamda bitki-böcek ilişkilerinin doğasını anlamak ve bu iklim değişimlerine paralel olarak ilişkilerde meydana gelebilecek değişimleri önceden tespit etmek yaşadığımız dünya için çok önemlidir. Hayvanlar aleminde sayı olarak en fazla türü içerisinde barındıran Arthropoda phylum'unun bu iklimsel değişimlerden nasıl ve ne oranda etkilendiği, böcek populasyonlarmm bu değişimlere olan olumlu ve olumsuz tepkileri böcek türlerinin potansiyel evrimine katkıda bulunacaktır.

The evaluation of global climate alterations from point of insects view

The increase of amount of gases such as CO2 and O2 in the atmosphere effects our earth in different rate in global scale. The effects of these gases on ecosystem have been understood by revealing of international agreements. Insects which are the important elements of ecosystem are being effected by these gases directly or indirectly. Scenarios of climate in the future indicate that the increase of amount of gases which cause global warming will effect ecosystem and its elements negatively. So it is very important for our earth to understand the nature of relations between plant and insect and also it is very important for our earth to determine beforehand changing that may be occured in this relations paralle to climatic changing. The way and the rate of effects that the class of Arthropoda which has the most species in the animal world has been exposed will contribute to potential evolution of the insect species and also positive and negative reactions of insect populations to these changing will contribute to potential evolution of the insect species.

___

  • Awmack, C. S., Woodcock, CM. ve Harrington, R. 1997. Climate change may increase vulnerability of aphids to natural enemies. Ecological Entomology, 22, 366-368.
  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C, Bezemer, T.M., Brown, V.K., Butterfıeld, J., Buse,.A», Coulson, J.C., Farrar, C, Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, L.R., Press, M.C, Symrnioudis, I., Watt, A.D. ve Whittaker, J.B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1-16.
  • Chappell, M.A. ve Whitmann, D.W. 1990. Grasshoppers thermoregulation. "Alınmıştır: Biology of Grasshoppers, R.F. Chapman and H. Joern (eds), John Wiley & Sons: New York, 143-172.
  • Chen, F., Feng, G ve Prajulee, M.N. 2005. Impact of elevated CO2 on trit interaction of Gossypium hirsitum, Aphis gossypii, and Leis axyridis. Environmental Entomology, 34(1), 37-46.
  • Coviella, C.E. ve Trumble, J. 1998. Effects of -elevated atmospheric carbon dioxide on insect-plan interactions. Conservation Biology, 4(13), 700-712.
  • Coviella, C.E., Morgan, D.J.W. ve John, T.T. 2000. Interactions of elevated CO2 and nit rogen fertilizations: effect on production of Bacillus thuringiensis toxins in transgenic plants. Environmental Entomology, 29(4), 781-787.
  • Ehleringer, J. R., Cerling, T. E. ve Dearing, M.D. 2002. Atmospheric CO2 as a global driver influencing plant animal interactions. Integ. and Comp. Biol, 42, 424-430.
  • Fuhrer,J. 2003. Agroecosytem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystem and Environment 97, 1-20.
  • Grodzinski, B., Schmidt, J. M., Watts, B., Bates, T., Dixon, A. ve Staines, H. 1999. Regulating plant/insect interactions using CO2 enrichment in model ecosystems. Adv. Space Res., 24(3), 281-291.
  • Heagle, A. S. 2003. Influence of elevated carbon dioxide on interactions between Frankliniella occidentalis and Trifolium repens. Environmental Entomology, 32(3), 421-424.
  • Heinrich, B. 1993. The Hot-Blooded Insects. Cambridge, M.A: Harvard University Press.
  • Hogg, E.H., Brandt, J.P. ve Kochtubajda, B. 2001. Growth and dieback of apsen forests in nortwestern Alberta, Canada, in relation to climate and insects. Canadian Journal of Forestry Research, 32, 823-832.
  • Holopainen, J.K. 2002. Aphid response to elevated ozone and CO2. Entomologia Experimental et Applicata, 104, 137-142.
  • Hoover, J.K. ve Newman, J.A. 2004. Tritrophic interactions in the context of climate change model of grasses, cereal aphids and their parasitoids. in review: Global Change Biology ,1-36.
  • Hughes, L. ve Bazzaz, F.A. 1997. Effects of elevated CO2 on interactions between the western flower. thrips, Franklinella occidentalis (Thysanoptera: Thripidae) and the common milkweed, Asclepias syriaca. Oecologia, 109, 286-290.
  • Hunter, M.D. 2001. Effects of elevated atmospheric carbon dioxide on insect-plant interaction. Agricultural and Forest Entomology, 3, 153-159
  • Johns, C.V., Beaumont, LJ. ve Hughes, L. 2003. Effects of elevated CO2 and tepmerature on development and consumption rates of Octosoma championi and O. scabripennis feeding on Lantana camara. Entomologia Experimentalis et Applicata 108, 169-178.
  • Kopper, B.J., Lindroth, R.L. ve Eric, V.N. 2001.CO2 and O3 effects on paper birch (Betulaceae: Betula papyrifera) phytochemistry and whitemarked tussock moth (Lymantridae: Orgyia leucostigma) Performance. Environmental Entomology, 30(6),1119-1126
  • Kopper, J.B ve Lindroth, R.L. 2003. Effects of elevated carbon dioxide and ozone on the phytochemistry of apsen and performance of an herbivore. Oecologia, 134, 95-113.
  • Kuokkanen, K., Yan, S. ve Pekka, N. 2003. Effects of elevated CO2 and temperature on the leaf chemistry of birch Betula pendula (Roth) and the feeding behaviour of the weevil Phyllobius maculicornis. Agricultural and Forest Entomology, 5, 209-217.
  • Lerdau, M. 2002. Benefits of the carbon nutrient balance hypothesis. OIKOS, 98(3) 534-536
  • Lindroth, R.L. ve Karl, K. 1998. Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. Journal of Chemical Ecology, 24(10), 1677-1695.
  • Mann, D.D., Jayas, D.S.,White, N. D. G. ve Muir, W.E. 1999. Mortality of adult Cryptolestes ferrigineus (Stephens) exposed to changing CO2 concentrations. Journal of Stored Products Research, 35, 385-395.
  • Mondor, E.B., Tremblay, M. N., Awmack, C. S. ve Lindroth, R. L. 2004. Divergent fero-mone-mediated insect behavior under global atmospheric change. Global Change Biology, 10, 1820-1824
  • Nali, C, Pucciariello, C. ve Lorenzini, G. 2002. Ozone distribution in central Italy and its effect on crop productivity. Agriculture, Ecosystem and Environment 90, 277-289.
  • Parde, R.S., Jayas, S. D. ve Novel, D.G.W. 2004. Movement of Cryptolestes ferru-gineus (Coleoptera:Cucujidae) in grain columns containing pockets of high moisture content wheat and carbon dioxide gradients. Stored Product Research 40, 299-316.
  • Redy, G. V. P., Tossavainen, P., Nerg, A. M ve Holopainen, J.K. 2004. Elevated atmospheric CO2 affects the chemical quality ofb plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, spodoptera littoralis. Journal of Agriculture and Food Chemistry, 52, 4185-4191.
  • Shazali, M. E. H., Imamura,T. ve Miyanoshita, A. 2004. Mortality off eggs of the cowpea bruchid, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in carbon dioxide under high pressure. Applied Entomology and Zoology, 39(1), 49-53.
  • Van Epenhuijsen, C. W., Carpenter, A. ve Butler, R. 2002. Controlled atmospheres for the post-harvest control of Myzus persicae (Sulzer) (Homoptera:Aphididae): effects of carbon dioxide concentration. Journal of Stored Products Research, 38, 281-291.
  • Volney, W. J. A. ve Fleming, R.A. 2000. Climate change and impacts of boreal forest insects. Agriculture, Ecosystems and Environment, 82, 283-294.
  • Whittaker, J. B. ve Tribe, N.B. 1996. An altitudinal transect as an indicator of responses of a spittlebug (Auchenorrhynca, Cercopidae) to climate change. European Journal of Entomology, 93, 319-324.
  • Zhou, S., Cridle, R. S. ve Elizabeth, J.M. 2000. Metabolic response of Platynota stultana pupae to controlled atmospheres and its relation to insect mortality response. Journal of Insect Physiology, 46, 1375-1385.