Effects of calcium salts on chilling tolerance in cucumber (Cucumis sativus L.) seedling roots

Yirmibeş °C de (36 h) çimlendirilen 'Poinsett 76' fidelerinin kökleri yine aynı sıcaklıkta 2 h lik sürelerle kalsiyum sülfat, kalsiyum nitrat, kalsiyum klorit, ve kalsiyum hidroksit ile muamele edilmişlerdir. Kalsiyum tuzları ile muamele edilen kökler distile H2O ile yıkandıktan sonra bir grup kök 2 °C de 72 ve 96 h bekletilirken, diğer grup ise 2 0oC de 72 ve 96 h bekletildikten sonra 24 h oda sıcaklığında bekletilmişlerdir. CaSO4 muamelesini takiben 72h ve 96 h süre ile üşüme stresine maruz bırakıldıktan sonra tekrar 72 h oda sıcaklığında inkübe edilen hıyar fidelerinin kökleri, üşüme stresi altındaki kontrol grubuna göre daha az zararlandığmı daha fazla kök büyümesi ile göstermiştir. CaCl2 ve Ca(NO3)2'nin yüksek konsantrasyonları kök büyümesinde önemli düzeyde yavaşlamaya sebeb olmuştur. CaSO4, üşüme stresi altındaki fide köklerinin iyon akışını (EL) önemli düzeyde azaltmıştır, Denemede kullanılan bütün kalsiyum tuzlarının, 150 mM lık konsantrasyonuna kadar, fide kök hücrelerinde reaksiyon ürünü olarak meydana gelen malondialdehyde (MDA) miktarını azaltığı belirlenmiştir. Fakat, CaSO4'ın 150 mM düzeyinde, 72-h üşüme stresinden sonra oda sıcaklığında tutulan fide köklerinin EL ve MDA değerleri, diğer uygulamalar ile karşılaştırıldığında en düşük seviyede bulunmuştur. Üşüme stresi altındaki fide köklerinin süperokside dismutaz ve katalaz aktiviteleri, kontrol grubuna göre azalmıştır. Üşüme stresi altında peroksidaz ve glutatiyon redüktaz enzim aktiviteleri artmış ve genellikle kalsiyum tuzlarının bulunduğu ortamlarda, enzim aktiviteleri control grubuna göre azalmıştır.

Hıyar (Cucumis sativus L.) fide köklerinin üşüme toleransı üzerine kalsiyum tuzlarının etkileri

Cucumber seeds cv Toinsett 76' germinated at 25 °C for 36 h were treated with calcium sulfate, calcium nitrate, calcium chloride, and calcium hydroxide for 2 hours at 25 °C. After incubation, treated seedlings were rinsed with distilled H2O and chilled at 2 °C for 72 or 96 hours with or without 24 h re-warming. Roots of CaSO4-treated cucumber seedlings exhibited less chilling injury at all concentrations, when exposed to 72h and 96 h chilling periods with a 72 h re-warming period as shown by greater root growth compared to the chilled control. Higher concentrations of CaCl2 and Ca(NO3)2 resulted in significant root growth inhibition. Electrolyte leakage (EL) was significantly reduced by CaSO4 up to 150 mM under chilling conditions and all calcium salt treatments reduced malondialdehyde (MDA) levels in seedling roots up to 150 mM. However, at 150 mM CaSO4 both EL and MDA values of 72-h chilled or re-warmed roots were at their lowest level compared to other treatments. Both superoxide dismutase and catalase activity of seedling roots decreased under chilling conditions compared to the non-chilled control, although the reduction was less in the presence of CaSO4. Peroxidase and glutathione reductase activities increased under chilling conditions and were generally reduced in the presence of calcium salts compared to the chilling control.

___

  • Asada, K. 1992. Ascorbate peroxidase- a hydrogen peroxide scavenging enzymes in plants. Physiol. Plant., 85, 235-241.
  • Benga, G. and Holmes, R.P. 1984. Interactions between componets in biological membra¬nes and their implications for membrane function. Biophys. Molec. Biol, 43, 195-257.
  • Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem., 58, 79-110.
  • Campell, A. K. 1983. Intracellular Calcium. Its Universal Role as Regulator. Department of Medical Biochemistry John Wiley & Sons Limited New York.
  • Chance, B. and Maehly, A.C. 1955. Assay of catalases and peroxidases. Methods Enzym. 2, 762-775.
  • Chen, N.M. and Paul, R.E. 1986. Development and prevention of chilling injury in papaya fruit. J. Amer. Soc. Hort. Set 111, 639-643.
  • Chowdhury, S.R. and Chowdhury, M.A. 1985. Hydrogen peroxide metabolism as an index of water stress tolerance in jute. Physiol. Plant., 65, 476-480.
  • Elstner, E.F. 1982. Oxygen activation and toxicity. Annu. Rev. Plant Physiol., 33, 73-96.
  • Fadzillah, N.M., Gill, V., Finch, R.P. and Burdon, R.H. 1996. Chilling, oxidative stress and antioxidant responses in shoot culture of rice. Planta., 199, 552-556.
  • Fadzillah, N.M., Gill, V., Finch, R.P. and Burdon, R.H. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant Journal. 10(6), 1017-1026.
  • Frenkel, C. and A. Erez. 1996. Induction of chilling tolerance in cucumber (Cucumis sativus) seedlings by endogenous and applied ethanol. Phys. Plant., 96, 593-600.
  • Guttridge, J.M. 1977. The effect of calcium on phospholipid peroxidation. Biochem. Bio¬phys. Res. Comm. 74, 529-537.
  • Hallett, M.B., Luzro, J.P. and Campell, A.K. 1981. Stimulation of Ca+2 dependent chemiluminescense in rat polymorphonuclear leuko-cytes by polystyrene beads and the non-lytic action. Immunology., 44, 569-576.
  • Halliwell, B. and Gutteridge, J.M.C. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys., 246, 501-514.
  • Heath, R.L.and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Bioch. Biophys., 125, 189-198.
  • Helmy, Y.J., Singer, S.M. and El-Abd, S.O. 1993. Increased chilling tolerance by using some mineral nutrients for cucumber seedlings. Egypt. J. Hort., 20(2), 243-256.
  • Herner, W. 1990. The effects of chilling temperatures during seed germination and early seedling growth. "In : C.Y. Wang (ed.), Chilling Injury of Horticultural Crops. CRC Press. Boca Raton, FL."
  • Jahnke, L.S., Hull, M.R. and Long, S.P. 1991. Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environ. 14, 97-104.
  • Jennings, P.H. and Saltveit, M.E. 1994a. Temperature and chemical shocks induce chilling tolerance in germinating Cucumis sativus (cv. Poinsett 76) seeds. Phys. Plant., 91, 703-707.
  • Jennings, P.H. and Saltweit, M.E. 1994b. Temperature effects on imbibition and germination of cucumber (Cucumis sativus) seeds. J. Amer. Soc. Hort. Sci., 119(3), 464- 467.
  • Levitt, J.M. 1972. Responses of Plants to Environmental Stress. Academic Press, New York.
  • Levitt, J.M. 1980. Responses of Plants to Environmental Stresses. Vol. 1. Academic Press, New York.
  • Lyons, J.M. 1972. Phase transitions and control of cellular metabolism at low temperatures. Cryobiology, 9, 341-350.
  • Lyons, J.M. 1973. Chilling injury in plant. Annu. Rev. Plant Physiol., 24, 445-466.
  • Lyons, J.M. and Raison, J.K. 1970. Oxidation of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol., 45, 386-389.
  • Markhart, A.H. 1986. Chilling injury: A review of possible causes. Hort. Science. 2, 1329-1333.
  • Moline, H.E. 1980. Effects of vacuum infiltration of calcium chloride on ripening rate and chilling injury of tomato fruit. Phytopath., 70, 691.
  • Minorsky P.V. 1985. A heuristic hypothesis of chilling injury in plants: A role for calcium as the primary physiological transducer of injury. Plant Cell Environment, 8, 75-94.
  • Nakano, Y. and Asada, K. 1981. Hydrogen per¬oxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867-880.
  • O'Kane, D., Gill, V., Boyd, P. and Burdon, R. 1996. Chilling, oxidative stress, and antioxidant responses in Arabidopsis thaliana callus. Planta., 198, 371-377.
  • Omran, R.G. 1980. Peroxidase levels and the activity of catalase, peroxidase, and indo-leacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol, 65, 407-408.
  • Parkin, K.L., Marangony, A., Jakman, R.L., Yada, R.Y. and Stanley, D.W. 1989. Chilling injury. A review of possible mechanisms. J. Food Biochem., 13, 127-153.
  • Prasad, T.K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: Changes in oxidant system, oxidation of proteins and lipid, and protease activity. Plant J., 10, 1017-1026.
  • Prasad, T.K. 1997. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiol., 114, 1369-1376.
  • Purvis, A.C. and Shewfelt, R.C. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol. Plant, 88, 712-718.
  • Raison, J.K. and Lyons, J.M. 1986. Chilling injury: A plea for uniform terminology. Plant Cell Environ., 19, 685-686.
  • Rikin, A., Blumenfeld, A. and Richmond, A.E. 1976. Chilling resistance as affected by stressing environments and ABA. Bot. Gaz., 137,307-312.
  • Roux, S.J., and Slocum, R.D. 1982. Role of calcium in mediating cellular functions important for growth and development in higher plants. "In:. Calcium and Cellular Function. W.Y. Cheung (ed.),Vol. Ill, Academic Press, New York and London, 409-453."
  • SAS, 1995. SAS/STAT User's Guide. Version 6.12. SAS Institute, Cary, North Carolina.
  • Scandalios, J.G. 1993. Oxygen stress and su-peroxide dismutase. Plant Physiol. 101, 7-12.
  • Scott, K.J. and Wills, R.B.H. 1975. Postharvest application of calcium as a control for storage breakdown of apples. HortScience, 10, 75-76.
  • Simon, E.W. 1978. The symptoms of calcium deficiency in plants. New Phytol., 80, 1-15.
  • Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol., 125, 27-58.
  • Walker, M.A. and McKersie, B.D. 1993. Role of ascorbate-glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol, 141,234-239.
  • Wang, C.Y. 1982. Physiological and biochemical responses of plants to chilling stress. HortScience, 17', 173-186.
  • Wiles, A.B. 1959. Beneficial effects of calcium on cotton seedlings. Mississippi Agr. Expt. Sta. Info., pp. 637.
  • William, D.W. and Herner, R.C. 1982. Chilling injury of germinating seeds and seedlings. HortScience, 17(2), 169-172.
  • Winston, G.W. 1990. Physiochemical basis for free radical formation in cell: production and defenses. "Inj. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. R.G. Alscher and J.R. Cumming (eds.), Wiley-Liss, Inc., New York, 57-86."
  • Wise, R.R. andNaylor, A.W. 1987. Chilling-enhanced photooxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 83, 278-282.
  • Zhang, J. and Kirkham, M.B. 1994. Drought-stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol, 35,785-791.
  • Zocchi, G. and Hanson, J.B. 1982. Calcium influx into com roots as a result of cold shock. Plant Physiol, 70, 318-319.