Gıda ambalajlamasında antimikrobiyel maddde içeren yenilebilir filmler/ kaplamalar ve uygulamalar

Son yıllarda minimum işlem görmüş, tüketime hazır, kolay hazırlanan gıda ürünlerine olan talebin artması gıda kalite ve güvenliği açısından yeni sorunların ortaya çıkmasına neden olmuştur. Bu sorunların çözümü için ısıl olmayan prosesler (yüksek hidrostatik basınç, vurgulu elektrik alanı gibi), yeni ambalajlama teknikleri (aktif ambalajlama, modifiye atmosferde ambalajlama gibi) gibi yaklaşımlar üzerinde çalışılmaktadır. Aktif ambalajlama yöntemlerinden biri olan antimikrobiyel ambalajlama, gıdadaki canlı mikroorganizma sayısını azaltarak gıda güvenliğini sağlayan yeni bir ambalajlama sistemidir. Antimikrobiyel madde içeren ambalajlama sistemlerinden yenilebilir film ve kaplamalar; süt ürünleri, et ve et ürünleri, meyve-sebze gibi gıdalara uygulandığında gıdadaki canlı mikroorganizma gelişimini geciktirir veya engeller dolayısıyla gıdanın raf ömrü ve kalitesini artırır. Bu derlemede, film veya kaplama olarak uygulanabilen antimikrobiyel ambalajların üretiminde kullanılan doğal antimikrobiyel maddelerden, yenilebilir polimerlerden ve antimikrobiyel yenilebilir film ve kaplamaların gıda uygulamalarından bahsedilmektedir.

Edible films/coatings containing antimicrobial agent and their applications in food packaging

The increased demands for minimally processed, ready to eat and easily prepared food products pose major challenges for food quality and safety. Researches are focused on new approaches such as non thermal processes (high hydrostatic pressure, pulsed electric field etc.) and new packaging systems (active packaging, modified atmosphere packaging etc.) for the solution of these challenges. Antimicrobial packaging that is one of the active packaging is a new packaging system. Antimicrobial packaging provides food safety to decrease the count of living microorganisms on food. When the edible films and coatings which are the packaging systems containing antimicrobial agents are applied on food products such as milk products, meat and meat product, fruit-vegetable, these packaging systems delay or prevent the growth of microorganisms, thereby increasing the shelf life and quality of foods. In this review, natural antimicrobial agents, edible polymers used in the production of antimicrobial packaging, and food application of antimicrobial edible films and coatings are mentioned.

___

  • 1. Gennadios A, McHugh TH, Weller CL, Krochta JM. 1994. Edible coatings and films based on proteins. In: Edible Coatings and Films to Improve Food Quality, Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds.), Technomic Publishing Company, USA, pp. 201-277.
  • 2. Cha DS, Chinnan MS. 2004. Biopolymer-based antimicrobial packaging: A review. Food Sci Nutr, 44: 223-237.
  • 3. Üçüncü M. 2007. Gıdaların Ambalajlanması. Ege Üniversitesi Basımevi, İzmir, Türkiye, 896 s.
  • 4. Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A. 2002. Edible antimicrobial films based on chitosan matrix. J Food Sci, 67: 1162-1169.
  • 5. Quintavalla S, Vicini L. 2002. Antimicrobial food packaging in meat industry. Meat Sci, 62: 373-380.
  • 6. Suppakul P, Miltz J, Sonneveld K, Bigger SW. 2003. Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci, 68: 408-420.
  • 7. Özdemir M, Floros JD. 2004. Active food packaging technologies. Food Sci Nutr, 44: 185-193.
  • 8. Donhowe F, Fennema O. 1994. Edible films and coating: characteristics, formation, definition, and testing methods. In: Edible Coatings and Films to Improve Food Quality, Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds.), Technomic Publishing Company, USA, pp. 1-24.
  • 9. Kristo E, Koutsoumanis KP, Biliaderis CG. 2008. Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloid, 22: 373–386.
  • 10. Sivarooban T, Hettiarachchy NS, Johnson MG. 2008. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res Int, 41: 781–785.
  • 11. Vasconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN. 2009. Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int, 42: 762-769.
  • 12. Sothornvit R, Rhim JW, Hong SI. 2009. Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng, 91: 468–473.
  • 13. Appendini P, Hotchkiss JH. 2002. Review of antimicrobial food packaging. Innov Food Sci Emerg, 3: 113-126.
  • 14. Çağrı A, Üstünol Z, Ryser ET. 2002. Inhibition of three pathogens on Bologna and summer sausage using antimicrobial edible films. J Food Sci, 67 (6): 2317-2324.
  • 15. Santiago-Silva P, Soares NFF, Nóbrega JE, Júnior MAW, Barbosa KBF, Volp ACP, Zerdas ERMA, Würlitzer NJ. 2009. Antimicrobial efficiency of film incorporated with pediocin (ALTA 2351) on preservation of sliced ham. Food Control, 20: 85-89.
  • 16. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O. 2008. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbio, 121: 313-327.
  • 17. Mastromatteo M, Barbuzzi G, Conte A, Del Nobile MA. 2009. Controlled release of thymol from zein based film. Innov Food Sci Emerg, 10: 222–227.
  • 18. Hong YH, Lim GO, Song KB. 2009. Physical properties of Gelidium corneum–gelatin blend films containing grapefruit seed extract or green tea extract and its application in the packaging of pork loins. J Food Sci, 74 (1): 6-10.
  • 19. Yener FYG, Korel F, Yemenicioğlu A. 2009. Antimicrobial activity of lactoperoxidase system incorporated into cross-linked alginate films. J Food Sci, 74 (2): 73-79.
  • 20. Jin T, Liu L, Zhang H, Hicks K. 2009. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. Int J Food Sci Tech, 44: 322–329.
  • 21. Mathew S, Abraham TE. 2008. Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloid, 22: 826–835.
  • 22. Krasaekoopt W, Mabumrung J. 2008. Microbiological evaluation of edible coated fresh-cut cantaloupe. Nat Sci, 42: 552–557.
  • 23. Jausovec D, Angelescu D, Voncina B, Nylander T, Lindman B. 2008. The antimicrobial reagent role on the degradation of model cellulose film. Colloid Interf Sci, 327: 75–83.
  • 24. Ozdemir M, Floros JD. 2008. Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. J Food Eng, 86: 215-224.
  • 25. Lu J, Wang X, Xiao C. 2008. Preparation and characterization of konjac glucomannan/poly (diallydimethylammonium chloride) antibacterial blend films. Carbohyd Polym, 73: 427-437.
  • 26. Janes ME, Koosheshand S, Johnson MG. 2005. Control of Listeria monocytogenes on the surface of refrigerated, ready-to-eat chicken coated with edible zein film coatings containing nisin and/or calcium propionate. J Food Sci, 67 (7): 2754-2757.
  • 27. Pranoto Y, Rakshit SK, Salokhe VM. 2005. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol, 38: 859–865.
  • 28. Min S, Haris LJ, Krochta JM. 2005. Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli O157:H7. J Food Sci, 70 (7): 332-338.
  • 29. Li B, Kennedy JF, Peng JL, Yie X, Xie BJ. 2006. Preparation and pPerformance evaluation of glucomannan–chitosan–nisin ternary antimicrobial blend film. Carbohyd Polym, 65: 488-494.
  • 30. McCormick KE, Han IY, Acton JC, Sheldon BW, Dawson PL. 2005. In-package pasteurization combined with biocideimpregnated films to inhibit Listeria monocytogenes and Salmonella typhimurium in turkey Bologna. J Food Sci, 70 (1): 52-57.
  • 31. Theivendran S, Hettiarachchy NS, Johnson MG. 2006. Inhibition of Listeria monocytogenes by nisin combined with grape seed extract or green tea extract in soy protein film coated on turkey frankfurters. J Food Sci, 71 (2): 39-44.
  • 32. Quattara B, Simard RE, Piette G, Begin A, Holley RA. 2000. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbio, 62: 139-148.
  • 33. Duan J, Park SI, Daeschel MA, Zhao Y. 2007. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. J Food Sci, 72 (9): 355-362.
  • 34. Oliveira TM, Soares NFF, Pereira RM, Fraga KF. 2007. Development and evaluation of antimicrobial natamycin-incorporated film in gorgonzola cheese conservation. Packag Technol Sci, 20: 147-153.
  • 35. Santos Pires AC, Soares NFF, Andrade NJ, Silva LHM, Camilloto GP, Bernardes PC. 2008. Development and evaluation of active packaging for sliced mozzarella preservation. Packag Technol Sci, 21: 375-383.
  • 36. Seol KH, Lim DG, Jang A, Jo C, Lee M. 2009. Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 oC. Meat Sci, (in press).
  • 37. Gomez-Estaca J, Montero P, Gimenez B, Gomez-Guillen MC. 2007. Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chem, 105: 511–520.
  • 38. Saucedo-Pompa S, Rojas-Molina R, Aguilera-Carbo AF, Saenz-Galindo A, La Garza H, Jasso-Cantu D, Aguilar CN. 2009. Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Res Int, 42: 511–515.
  • 39. Ayana B, Turhan KN. 2009. Use of antimicrobial methylcellulose films to control Staphylococcus aureus during storage of kasar cheese. Packag Technol Sci, (in press).
  • 40. Zivanovic Z, Chı S, Draughon AF. 2005. Antimicrobial activity of chitosan films enriched with essential oils. J Food Sci, 70 (1): 45-51.
  • 41. Sarıkuş G. 2006. Farklı antimikrobiyel maddeler içeren yenilebilir film üretimi ve kaşar peynirinin muhafazasında mikrobiyel inaktivasyona etkisi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Gıda Mühendisliği Bölümü, Isparta, 69 s.
  • 42. Nguyen VT, Gidley MJ, Dykes GA. 2008. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol, 25: 471–478.
  • 43. Rojas-Grau MA, Avena-Bustillos RJ, Olsen C, Friedman M, Henika PR, Martin-Belloso O, Pan Z, McHugh TH. 2007. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible. J Food Eng, 81: 634 –641.
  • 44. Rojas-Grau MA, Soliva-Fortuny R, Martin-Belloso O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. 2009. Trends Food Sci Technol, 20: 438-447.
  • 45. Beverlya RL, Janes ME, Prinyawiwatkula W, No HK. 2008. Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiol, 25: 534-537.
  • 46. Moreira MD, Ponce A, Valle CD, Roura SI. Edible coatings on fresh squash slices effect of film drying temperature on the nutritional and microbiological quality. J Food Process Pres, 33: 226–236.krobiyel maddeler.