SARS ve MERS aşılarının gizemi, Coronavirus aşısına yeni yaklaşımlar

İnsanlarda ciddi akut solunum yolu sendromuna yol açanyeni tip bir coronavirus olan SARS-CoV-2’nin neden olduğu COVID-19 pandemisi, insanlığı büyük bir endişeye sevketmiş ve tüm dünyada yaşamı önemli ölçüde etkilemiştir.SARS-CoV-2, yerleşik tedavilerin ve aşıların olmaması nedeniyle milyonlarca insana bulaşmış durumdadır. Dünyadaaşı uygulamaları, insanlarda ve hayvanlarda enfeksiyöz hastalıklardan korunma ve kontrolde hem en etkili hem de enekonomik ve umut verici yöntem olarak kabul edilmektedir.SARS-CoV-2’nin genom ve protein yapısının rekor seviyededenilebilecek bir sürede belirlenmiş olması, proflaktik amaçlı inaktive ve attenue viral aşıların yanısıra virus benzeri partikül, alt ünite, RNA, DNA ve vektör aşılarının geliştirilmesineizin vermiştir. Ayrıca bu virusla yakın akraba olan daha önceinsanlarda salgınlara yol açmış SARS-CoV, MERS-CoV ile hayvanlara ait coronavirus enfeksiyonlarından elde edilen deneyimler de bu sürece büyük katkı sağlamıştır. Son coronaviruspandemisi, tüm dünyadaki üniversite ve araştırma enstitülerinin çalışma planlarını değiştirmelerine neden olmuştur. Bukurumlar, hastalığın spesifik bir aşı ile nasıl durdurulabileceğini belirlemek amacıyla yoğun bir çalışma temposuna girmişlerdir. Şu an dünya genelinde ve ülkemizde birçok firma,üniversite ve enstitü SARS-CoV-2’ye karşı etkili aşı geliştirmeprogramını çalışma kapsamlarına almış bulunmaktadırlar.Bu derlemede, coronavirus aşılarıyla ilgili daha önceki deneyimler, dünya üzerinde yürütülmekte olan SARS-CoV-2 aşıgelişimine yönelik mevcut yaklaşımlar, kullanılan yöntem vestratejiler ile aşı adayları gözden geçirilmiştir.

The mysterious of SARS and MERS vaccines, new approaches to a Coronavirus vaccine

COVID-19 pandemic caused by SARS-CoV-2, a new type of coronavirus that causes severe acute respiratory syndrome in humans, has caused great concern to humanity and significantly affected life all over the world. SARS-CoV-2 has been transmitted to millions of people due to the lack of established treatments and vaccines. Vaccination applications in the world are regarded as both the most effective and the most economical and promising method in the protection and control of infectious diseases in humans and animals. The determination of the genome and protein structure of SARS-CoV-2 in a record-breaking time allowed the development of prophylactic virus-like particle, subunit, RNA, DNA and vector vaccines as well as inactivated or attenuated viral vaccines. In addition, the experiences obtained from SARSCoV, MERS-CoV which are closely related to this virus, and animal coronavirus infections, have previously caused epidemics in humans, and contributed greatly to this process. The latest coronavirus pandemic has caused universities and research institutes around the world to change their work plans. These institutions have entered into a busy schedule to determine how the disease can be stopped with a specific vaccine. Currently, many companies, universities and institutes around the world and in our country have included an effective vaccine development program against SARS-CoV-2. In this review, previous experiences with coronavirus vaccines and current approaches to SARS-CoV-2 vaccine development, methods and strategies carried out around the world and vaccine candidates are reviewed.

___

  • Adalja AA, Watson M, Cicero A, Inglesby T, 2019. Vaccine Platforms: State of the Field and Looming Challenges, Open Philanthropy Project, Johns Hopkins University.
  • Addie DD, Belak S, Boucraut-Baralon C, Egberink H et al., 2009. Feline infectious peritonitis. ABCD guidelines on prevention and management. J Feline Med Surg, 11, 594- 604.
  • Agrawal AS, Tao X, Algaissi A, Garron T, et al., 2016. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother, 12(9), 2351-2356.
  • Alsaadi EAJ, Neuman BW, Jones IM, 2019. A Fusion Peptide in the Spike Protein of MERS Coronavirus.Viruses, 11(9), 825.
  • Altmann DM, Douek DC, Boyton RJ, 2020. What policy makers need to know about COVID-19 protective immunity. Lancet, 27, 1-3.
  • Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, et al., 2014. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med, 370, 2499-2505.
  • Banerjee A, Santra D, Maiti S, 2020. Energetics based epitope screening in SARS CoV-2 (COVID 19) spike glycoprotein by immuno-informatic analysis aiming to a suitable vaccine development. BiorXiv preprint.
  • Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, et al., 2020. The 2019-new coronavirus epidemic: Evidence for virus evolution. J Med Virol, 92, 455-459.
  • Bolles M, Deming D, Long K, Agnihothram S, et al., 2011. A double-inactivated severe acute respiratory syndrome coronavirusvaccine provides incomplete protection in mice and induces increased eosinophilicproinflammatory pulmonary response upon challenge. J Virol, 85, 12201- 12215.
  • Boopathi S, Poma AB, Kolandaivel P, 2019. Novel coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn, 1-10.
  • Bradburne AF, Bynoe ML, Tyrell DAJ, 1967. Effects of a “new” human respiratory virus in volunteers. Br Med J, 3, 767- 769.
  • Buchholz UJ, Bukreyev A, Yang L, Lamirandeet EW, et al., 2004. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA, 101(26), 9804-9809.
  • Bull JJ, 2015. Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it? Virus Evol, 1, 1, vev005. Callaway E, 2020. The race for coronavirus vaccines: a graphical guide. Nature, 580(7805), 576-577.
  • Cao Y, Zhu X, Hossen MN, Kakar P et al., 2018. Augmentation of vaccine-induced humoral and cellular immunity by a physical radiofrequency adjuvant. Nat Commun, 9(1), 3695.
  • Corey L, Mascola JR, Fauci AS, Collins FS, 2020. A strategic approach to COVID-19 vaccine R&D. Science, 368(6494), 948-950.
  • Decaro N, Lorusso A, 2020. Novel human coronavirus (SARSCoV-2): a lesson from animal coronaviruses. Vet Microbiol, 244, 1-18.
  • Decaro N, Martellaa V, Saif LJ, Buonavogliaa C, 2020. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught. Res Vet Sci, 13, 121-123.
  • Dowd KA, Ko S, Morabito KM, Yang ES et al., 2016. Rapid development of a DNA vaccine for Zika virus. Science, 354(6309), 237-240.
  • Du L, He Y, Zhou Y, Liu S et al., 2009. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol, 7, 226-236.
  • Du L, Zhang X, Liu J, Jiang S, 2011. Protocol for Recombinant RBD-based SARS Vaccines: Protein Preparation, Animal Vaccination and Neutralization Detection. J Vis Exp, 51, e2444,
  • Duijvestijn M, Mughini-Gras L, Schuurman N, Schijf W, et al., 2016. Enteropathogen infections in canine puppies: Cooccurrence, clinical relevance and risk factors. Vet Microbiol, 195, 115-122.
  • Edridge AWD, Kaczorowska JM, Hoste ACR, Bakker M et al., 2020. Coronavirus protective immunity is short-lasting. medRxiv.
  • Ewer KJ, Lambe T, Rollier CS, Spencer AJ, et al.,2016. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol, 41, 47-54.
  • Fehr AR, Perlman S, 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 1282, 1-23.
  • Folegatti PM, Ewer KJ, Aley PK, Angus B, et al., 2020. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 396, 467-478.
  • Follis KE, York J, Nunberg JH, 2006. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology, 5, 350 (2), 358-369.
  • Galanti M, Shaman J, 2020. Direct observation of repeated infections with endemic coronaviruses medRxiv.
  • Ge X-Y, Li J-L, Yang X-L, Chmura AA, et al., 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503, 535-538.
  • GenBank, Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1, complete genome, 2020 https://www.ncbi. nlm.nih.gov/nuccore/MN908947.
  • German AC, Helps CR, Harbour DA, 2004. FIP: a novel approach to vaccination. J Feline Med Surg, 6(2), 119-124.
  • Graham BS, 2020. Rapid COVID-19 vaccine development. Science, 368(6494), 945-946.
  • Gonzalez-Nicolini V, Sanchez-Bustamante CD, Hartenbach S, Fussenegger M, et al., 2006. Adenoviral vector platform for transduction of constitutive and regulated tricistronic or triple-transcript transgene expression in mammalian cells and microtissues. J Gene Med 8, 1208-1222.
  • Hamre D, Procknow JJ, 1966. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med, 121(1), 190-193.
  • Hasırcıoğlu S, Şimşek A, 2007. Investigation of enteric bovine coronavirus infections in calves and the role of clinically healthy cattle in epidemiology of coronavirus infections, Veterinarium, 18(1), 43-49.
  • Hasoksuz M, Lathrop SL, Gadfield KL, Saif LJ, 1999. Isolation of bovine respiratory coronaviruses from feedlot cattle and comparison of their biological and antigenic properties with bovine enteric coronaviruses. Am J Vet Res, 60, 1227-1233.
  • He Y, Zhou Y, Liu S, Kou Z, et al., 2004. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine. Biochem. Biophys Res Commun, 324, 773-781.
  • Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, et al., 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.
  • Houser KV, Broadbent AJ, Gretebeck L, Logel V, et al., 2017. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog, 13(8), e1006565.
  • Hu B, Zeng LP, Yang XL, Ge XY, et al., 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathogens, 13(11), e1006698
  • Jackwood MW, De Wit JJ, 2020. Infectious Bronchitis, In: Diseases of Poultry, Ed; David E Swayne, 14th ed, John Wiley and Sons Inc, pp; 167-188.
  • Jiang S, He Y, Liu S, 2005. SARS vaccine development. Emerg Infect Dis, 11, 1016-1020.
  • Kaur SP, Gupta V, 2020. COVID-19 Vaccine: A comprehensive status report, Vir Res, 288, 1-12.
  • Khuroo MS, Khuroo M, Khuroo MS, Sofi AA, et al., 2020, COVID-19 vaccines: A race against time in the middle of death and devastation. J Clin Exp Hepatol.
  • Kim TW, Lee JH, Hung CF, Peng S et al., 2004. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol, 78, 4638-4645.
  • Koirala A, Joo YJ, Khatami A, Chiu C, et al., 2020. Vaccines for COVID-19: The current state of play. Paediatric Resp Rev, 35, 43-49.
  • Lai AL, Millet JK, Daniel S, Freed JH, et al., 2017. The SARSCoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner. J Mol Biol, 429, 3875-3892.
  • Lau SKP, Zhang L, Luk HKH, Xiong L, et al., 2018. Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding. J Infect Dis, 218, 197-207.
  • Lau YL, Peiris JSM, 2005. Pathogenesis of severe acute respiratorysyndrome. Curr Op Immunol, 17, 404-410.
  • Le TT, Andreadakis Z, Kumar A, Roman RG, et al., 2020. The COVID-19 vaccine development landscape. Nature Rev Drug Dis, 19, 305-306.
  • Li R, Qiao S, Zhang G, 2020. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. Journal of Infection, 80(4), 469-496.
  • Li W, Shi Z, Yu M, Ren W, et al., 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310, 676-679.
  • Liu MAA, 2019. Comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines, 7(2), 37, 1-20.
  • Long Q, Tan X, Shi Q, Li Q, et al., 2020. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med, 26, 1200-1204.
  • Luo CM, Wang N, Yang XL, Liu HZ, et al., 2018. Discovery of novel bat coronaviruses in south China that use the same receptor as MERS coronavirus. J Virol, 92, 116-118.
  • Madu IG, Roth SL, Belouzard S, Whittaker GR, 2009. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. J Virol, 83,7411-7421.
  • McBride R, van Zyl M, Fielding BC, 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6, 2991- 3018.
  • McIntosh K, Peiris JSM, 2009. Coronaviruses. In: Clinical Virology, Eds; Richman DD, Whitley RJ, Hayden FG, 3rd ed, ASM Press, Washington DC, p; 1155.
  • Menekşe M, 2019. Solunum yolu enfeksiyonu klinik belirtileri gösteren sığırlarda bovine coronavirus (BCoV) enfeksiyonlarının PCR tekniği ile araştırılması. Doktora Tezi, Selçuk Üniversitesi Sağlık Bilimleri Enstitüsü, Konya.
  • Neuman BW, Kiss G, Kunding AH, Bhella D, et al., 2011. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol, 174, 11-22.
  • Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM, et al., 2014. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog, 10, e1004077.
  • Pallesen J, Wang N, Corbett KS, Wrapp D, et al., 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA, 114, E7348-E7357.
  • Pang H, Liu Y, Han X, Xu Y, et al., 2004. Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: Implications for the design of an efective protein-based vaccine. J Gen Virol, 85, 3109-3113.
  • Pang H, Yang L, Wang L, Li J, et al., 2006. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology, 351(2), 466-475.
  • Pardi N, Hogan MJ, Pelc RS, Muramatsu H, et al., 2017. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 543(7644), 248-251.
  • Patel J, Patel P, Akinmuyiwa V, 2020. COVID-19 vaccine development: Insights, prospects and challenges. JVAT, 1(3), 14-20.
  • Pedersen NC, 2014. An update on feline infectious peritonitis: virology and immunopathogenesis. Vet J, 201, 123- 132.
  • Peiris JS, Chu CM, Cheng VC, Chan KS, et al., 2003. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet, 361(9371), 1767-1772.
  • Plotkin S, Orenstein WA, Offit PA (Eds), 2013. Vaccines, 6th edition. Philadelphia, Elsevier.
  • Rabaan AA, Al-Ahmed SH, Haque S, Sah R, et al., 2020. SARSCoV-2, SARS-CoV, and MERS-CoV: a comparative overview. Infez Med, 2, 174-184.
  • Reusken CB, Haagmans BL, Muller MA, Gutierrez C, et al., 2013. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis, 13, 859-866.
  • Robert-Guroff M, 2007. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol, 18(6), 546-556.
  • Roper RL, Rehm KE, 2009. SARS vaccines: where are we? Expert Rev Vaccines, 8, 887-898.
  • Saif LJ, 2020. Vaccines for COVID-19: perspectives, prospects, and challenges based on candidate SARS, MERS, and animal coronavirus vaccines. Allergy, 1-7.
  • Seow J, Graham C, Merrick B, Acors S, et al., 2020. Longitudinal evaluation and decline of antibody responses in SARSCoV-2 infection. medRxiv. Shang J, Ye G, Shi K, Wan Y et al., 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature, 581, 221-224.
  • Shin MD, Shukla S, Chung YH, Beiss V, et al., 2020. COVID-19 vaccine development and a potential nanomaterial path forward, Nature Nanotech, 15, 646-655.
  • Si L, Xu H, Zhou X, Zhang Z, et al., 2016. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science, 354(6316), 1170-1173.
  • Şimşek A, Dik I, 2020. Tek sağlık kavramı açısından SARSCoV-2 ve diğer coronaviruslar, APJHLS, 2(1), 44-55.
  • ter Meulen J, van den Brink EN, Poon LL, Marissen WE, et al., 2006. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med, 3, e237.
  • Thao TTN, Labroussaa F, Ebert N, V'kovski P, et al., 2020. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature, 582(7813), 561-565.
  • Tian X, Li C, Huang A, Xia S, et al., 2020. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect, 9, 382-385.
  • Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, et al., 2012. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE, 7, e35421.
  • Tu C, Crameri G, Kong X, Chen J, et al., 2004. Antibodies to SARS coronavirus in civets. Emerg Infect Dis, 10, 2244- 2248.
  • TÜBİTAK, 2020. https://www.tubitak.gov.tr/tr/haber/ cumhurbaskani-erdogan-covid-19-turkiye-platformuuyeleriyle-bir-araya-geldi Vabret N, Britton GJ, Gruber C, Hegde S, et al., 2020. Immunology of COVID-19: Current State of the Science. Immunity, 52, 910-941.
  • van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, et al., 2004. Identification of a new human coronavirus. Nat Med, 10(4), 368-373.
  • Walls AC, Park Y-J, Tortorici MA, Wall A, et al., 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281-292.
  • Wang CY, Li WT, Drabek D, Nisreen MA, et al., 2020. A human monoclonal antibody blocking SARS CoV-2 infection. bioRxiv.
  • Wang N, Shang J, Jiang S, Du L, 2020. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Front Microbiol, 11, 1-19.
  • Wang Q, Zhang L, Kuwahara K, Li L, et al., 2016. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in nonhuman primates. ACS Infect Dis, 2, 361-376.
  • Watanabe Y, Allen JD, Wrapp D, McLellan JS, et al., 2020. Sitespecific glycan analysis of the SARS-CoV-2 spike. Science. Weiner LP, 1987. Coronaviruses: a Historical Perspective, Adv Exp Med Biol, 218,1-5.
  • Weingartl H, Czub M, Czub S, Neufeld J, et al., 2004. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol, 78, 12672-12676.
  • WHO, 2017. Guidelines on clinical evaluation of vaccines: regulatory expectations. WHO Technical Report Series, No. 1004, 2017. Replacement of Annex 1 of WHO Technical Report Series, No. 924 Geneva, Switzerland. [Available from https://www.who.int/biologicals/expert_committee/
  • WHO_TRS_1004_web_Annex_9.pdf?ua=1. Erişim Tarihi: 20.08.2020.
  • WHO, 2020a. Coronavirus disease (COVID-19) pandemic https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Erişim Tarihi: 20.08.2020.
  • WHO, 2020b. MERS situation update, January 2020, http:// www.emro.who.int/pandemic-epidemic-diseases/merscov/mers-situation-update-january-2020.html. Erişim Tarihi: 20.08.2020.
  • WHO, 2020c, Draft landscape of COVID-19 candidate vaccines, https://www.who.int/publications/m/item/draftlandscape-of-covid-19-candidate-vaccines. Erişim Tarihi: 21.09.2020.
  • Wong SH, Lui RN, Sung JJ, 2020. Covid-19 and the digestive system. J Gastroenterol Hepatol, 35(5), 744-748.
  • Woo PC, Lau SK, Chu CM, Chan KH, et al., 2005. Characterization andcomplete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol, 79 (2), 884-895.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, et al., 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260-1263.
  • Wu F, Wang A, Liu M, Wang Q, et al., 2020a. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv.
  • Wu F, Zhao S, Yu B, Chen YM, et al., 2020b. A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.
  • Xia S, Zhu Y, Liu M, Lan Q, et al, 2020. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol, 17, 765-767.
  • Xia S, Yan L, Xu W, Agrawal AS, et al., 2019. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv, 5(4), eaav4580.
  • Xie X, Muruato A, Lokugamage KG, Narayanan K, et al., 2020. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe, 27, 841-848.e3.
  • Yadav DK, Satyendra NY, Khurana MP, 2014. Vaccines: Present Status and Applications, In: Animal Biotechnology, Models in Discovery and Translation, Eds; Verma AS, Singh A, 1st edition, Academic Press, Elsevier India, pp; 491-508.
  • Yong CY, Ong HK, Yeap SK, Ho KL, et al., 2019. Recent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus. Front Microbiol, 10, 1781.
  • Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, et al., 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New Engl J Med, 367(19), 1814-1820.
  • Zhang J, Zeng H, Gu J, Li H, et al., 2020. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines, 8, 153, 1-12.
  • Zhou D, Qi R, Zhang W, Tian X, et al., 2020. Identification of 22 N-glycosites on spike glycoprotein of SARS-CoV-2 and accessible surface glycopeptide motifs: implications on vaccination and antibody therapeutics.
  • Zhou P, Yang X-L, Wang X-G, Hu Be, et al., 2020a. A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579, 270-273.
  • Zhou P, Yang X-L, Wang X-G, Hu B, et al., 2020b. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin.
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi