Hayvan Coronavirusları, türler arası geçiş ve zoonotik potansiyelleri

Coronaviruslar (CoV) insan ve omurgalıların önemli patojenleriolarak bilinmektedir. Bu viruslar insan, hayvan, kuş, yarasa, fare vebirçok yaban hayvanında solunum, gastrointestinal ve merkezi sinirsistemi enfeksiyonları oluşturabilmektedir. İnsan CoV enfeksiyonları öncelikle üst solunum yolları ve gastrointestinal sistemi etkilemektedir. Klinik semptomlar hafif soğuk algınlığı benzeri tablodan,daha şiddetli bronşit ve pnömoni gibi akciğer ilişkili formlara kadardeğişmektedir. İki bin iki yılında SARS ve 2012’de MERS salgınlarından sonra CoV’ların hayvanlardan insanlara (zoonotik CoV’ler)bulaşma olasılığı kanıtlanmıştır. Aralık 2019’da ise Çin’in Wuhankentinde başlayan ve nedeni bilinmeyen bir pnömoni salgını dünyaçapında bir yayılım göstermiştir. Ocak 2020’de Dünya Sağlık Örgütü (WHO) tarafından bu virus yeni tip Coronavirus 2019 (nCoV-19)olarak tanımlanmış ve Şubat 2020’de Dünya Sağlık Örgütü (WHO)bu salgını küresel acil durum ilan ederek coronavirus hastalığı 2019(COVID-19) olarak açıklamıştır. Bu salgında dünya genelinde hergün binlerce ağır hasta spesifik antiviral tedavi eksikliği ve kliniktedavi yetersizliği nedeniyle hayatını kaybetmektedir. CoV’lerin sonyıllarda yüksek orandaki nükleotid değişimi ve rekombinasyonu büyük ölçüde populasyon, kentleşme ve modern tarım ve hayvancılıkuygulamaları gibi faktörler nedeniyle hızlanmaktadır. Bu faktörler,türler arası karışımı ve tür bariyerlerinin geçişini kolaylaştırmış veCoV’lerin genomik rekombinasyonuna yol açmıştır. Viral zoonoz enfeksiyonları önlemenin etkili yolu,“tek sağlık” kavramını dikkate alarak doğal rezervuarlar ve insanlar arasındaki engelleri korumaktır.

Animal coronaviruses, interspecies transmission and zoonotic potential

Coronaviruses (CoV) are known to be important pathogens of humans and vertebrates. These viruses can cause respiratory, gastrointestinal and central nervous system infections in humans, animals, birds, bats, mice and many wild animals. Lung-related forms such as bronchitis and pneumonia are more severe than a mild cold-like clinical feature in humans. After the SARS epidemics in 2002 and MERS in 2012, the possibility of CoV transmission from animals to humans (zoonotic CoVs) has been proven. In December 2019, a pneumonia epidemic that started in Wuhan, China and whose cause is unknown, spread worldwide. In January 2020, this virus was identified as the new type of Coronavirus 2019 (nCoV-19) by the World Health Organization (WHO), and in February 2020, the World Health Organization (WHO) declared this epidemic a global emergency, and coronavirus disease 2019 (COVID-19) as explained. In this epidemic, thousands of seriously ill patients die every day due to the lack of specific antiviral treatment and inadequate clinical treatment. The high rate of nucleotide change and recombination of CoVs in recent years has been accelerating largely due to factors such as population, urbanization and modern agriculture and animal husbandry practices. These factors facilitated inter-species mixing and crossing species barriers and led to genomic recombination of CoVs. An effective way to prevent viral zoonotic infections is to protect barriers between natural reservoirs and human society, taking into account the concept of "one health".

___

  • Ahn M, Cui J, Irving AT, Wang LF, 2016. Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci rep, 6(1), 1-7.
  • Alekseev KP, Vlasova AN, Jung K, Hasoksuz M, et al., 2008. Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences. J Vir, 82 (24), 12422-12431.
  • Chen L, Liu B, Yang J, Jin QD, 2014. BatVir: The database of bat-associated viruses. Database, 2014.
  • Chen Y, Liu Q, Guo D, 2020. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol, 92(4), 418-423.
  • Cheng VC, Lau SK, Woo PC, Yuen KY, 2007. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev, 20 (4), 660-694.
  • Chinese SMEC, 2004. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science, 303, 1666–1669.
  • Corman VM, Muth D, Niemeyer D, Drosten C, 2018. Hosts and Sources of Endemic Human Coronaviruses. Advance in Virus Research, 100, 163-188.
  • Cui J, Li F, Shi ZL, 2019. Origin and evolution of pathogenic coronaviruses. Nature Rev Mic, 17(3), 181-192.
  • Erles K, Toomey C, Brooks HW, Brownlie J, 2003. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology, 310(2), 216-223.
  • Fehr AR, Perlman S, 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 1282,1- 23.
  • Ge XY, Li JL, Yang XL, Chmura AA, et al., 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nat, 503 (7477), 535-538.
  • Graham RL, Baric RS, 2010. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus crossspecies transmission. J Vir, 84(7), 3134-3146.
  • Graham RL, Donaldson EF, Baric RS, 2013. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev. Mic, 11(12), 836-848.
  • Han MG, Cheon DS, Zhang X, Saif LJ, 2006. Cross-Protection against a Human Enteric Coronavirus and a Virulent Bovine Enteric Coronavirus in Gnotobiotic Calves. J Vir, 80(24), 12350–12356.
  • Hasöksüz M, Kılıç S, Saraç F, 2020. Coronaviruses and SARSCOV-2.Turk J Med Sci, 50, 549-556.
  • Hilgenfeld R, Peiris M, 2013. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res, 100, 286-95.
  • ICTV (International Committe Taxonomy Viruses), 2020. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019- nCoV and naming it SARS-CoV-2. Nat Mic, 5, 536–544.
  • Ismail MM, Cho KO, Ward LA, Saif LJ, et al., 2001. Experimental bovine coronavirus in turkey poults and young chickens. Avian Dis., 45(1), 157-63.
  • Jin Y, Yang H, Ji W, Wu W, et al., 2020. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses,12(4), 372.
  • Knobler S, Mahmoud A, Lemon S, Mack A, et al., 2004. Learning from SARS: Preparing for the Next Disease Outbreak - Workshop Summary. Washington (DC): National Academies Press (US), 2004.
  • Lim YX, Ng YL, Tam JP, Liu DX, 2016. Human Coronaviruses: A Review of Virus–Host Interactions. Diseases, 26 (4) 1-28,
  • Lv H, Wu NC, Tsang OTY, et al., 2020. Cross-reactive Antibody Response between SARSCoV-2 and SARS-CoV Infections. Cell Reports, 31, 107725.
  • Maclachlan NJ, Dubovi EJ, 2017. Fenner's Veterinary Virology, Part II: Veterinary and Zoonotic Viruses, 5th Edition, United States, Academic Press, 435-461.
  • Majhdi F, Minocha HC, Kapil S, 1997. Isolation and characterization of a coronavirus from elk calves with diarrhea. J.Clin.Microbiol, 35(11), 2937-2942.
  • Martina BE, Haagmans BL, Kuiken T, Fouchier RA, et al. 2003. SARS virus infection of cats and ferrets. Nat, 425, 915
  • Menachery VD, Yount BL, Debbink K, Agnihothram S, 2015. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat med, 21(12), 1508- 1513.
  • Morfopoulou S, Brown JR, Davies EG, Anderson G, et al., 2016. Human coronavirus OC43 associated with fatal encephalitis. N.Engl. J.Med, 375, 497–498.
  • Muller MA, Corman VM, Jores J, Meyer B, et al., 2014. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerg Infect Dis, 20(12), 2093.
  • Payne S, 2017. Viruses: From understanding to investigation. Chapter 17: Family Coronaviridae, Elsevier Inc. All rights reserved. Academic Press.
  • Peiris JSM, Guan Y, Yuen KY, 2004. Severe acute respiratory syndrome. Nat Med, 10(12), 88-97.
  • Perlman S, Netland J, 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7, 439–450.
  • Phan T, 2020. Novel coronavirus: From discovery to clinical diagnostics. Infec Gen and Evol, 79, 104211.
  • Reshi ML, Su YC, Hong JR, 2014. RNA viruses: ROS-mediated cell death. Int Jour of cell Bio, 2014.
  • Song HD, Tu CC, Zhang GW, Wang SY, et al., 2005. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. PNAS, 102(7), 2430-2435.
  • Su S, Wong G, Shi W, Liu J, et al., 2016. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol, 24(6), 490-502.
  • Terada Y, Matsui N, Noguchi K, Kuwata R, 2014. Emergence of Pathogenic Coronaviruses in Cats by Homologous Recombination between Feline and Canine Coronaviruses. PLoS One, 9(9) 1-13.
  • Van Der Hoek L, 2007. Human coronaviruses: what do they cause? Antivir Ther, 12(4), 651-658.
  • Williams ES, Barker IK, 2001. Infectious Diseases of Wild Mammals. Chapter 13; Coronaviral Infections, Third Edition, Iowa State University Press.
  • Yang Y, Ye F, Zhu N, Wang W, Deng Y, et al., 2015. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci rep, 5, 17554.
  • Ye ZW, Yuan S, Yuen KS, Fung SY, et al., 2020. Zoonotic origins of human coronaviruses. Int J Biol Sci, 16(10), 1686-1697.