COVID-19 hastalığının immünopatolojisi ve immünolojisindeki güncel veriler

31 Aralık 2019 tarihinde Çin Halk Cumhuriyeti’nden dünyaya yayılan Ağır Akut Solunum Sendromu (severe acute respiratory syndrome- SARS) koronavirüs (CoV)2’nin neden olduğu hastalık tablosu koronavirüs hastalığı-2019 (CoronavirusDisease 2019-COVID-19) olarak adlandırılmıştır. Bu derlemede, SARS-CoV-2’nin doğal ve adaptif bağışıklık ile etkileşiminin güncel makaleler ile detaylı bir şekilde ele alınmasıamaçlanmıştır. COVID-19 geçiren ağır vakalarda, immünolojik homeastazisin bozulduğu ve neticesinde sitokin fırtınasının geliştiği rapor edilmiştir. COVID-19 geçiren hastalardaartan viral yük, lenfopeni, eozinopeni, azalan trombosit sayısı hastalığın patolojisi ve şiddetinin derecesi ile ilişkilendirilen önemli belirteçler olmuştur. Koruyucu antikorlarınbeklenenden hızlı bir şekilde azalması ise, tekrarlayan enfeksiyonlara karşı daha dikkatli olunmasının zorunlu olduğunugöstermektedir. Bu neden ile etkin, güvenli aşı ve antiviral tedaviler bulunana kadar COVID-19 hastalığı ile sürdürülebilirve disiplinli mücadele şarttır

Current knowledge on immunopathology and immunology of COVID-19 disease

Severe Acute Respiratory Syndrome (SARS) coronavirus (CoV) 2 spread from the People's Republic of China on December 31, 2019 and it is called as a coronavirus disease-2019 (Coronavirus Disease 2019-COVID-19). In this review, it is aimed to discuss the interaction of SARS-CoV-2 with natural and adaptive immunity in detail with current articles. Patients with severe COVID-19, it has been reported that immunological homeostasis is impaired, resulting in cytokine storm. In COVID-19 patients, increased viral load, lymphopenia, eosinopenia and decreased platelet count have been important markers associated with pathology and disease severity. Protective antibodies decay is faster than our expectation, indicating that more attention should be paid to recurrent infections. Therefore, a sustainable and disciplined fight against COVID-19 is essential until effective, safe vaccines and antiviral treatments are available.

___

  • Acharya D, Liu G, Gack MU, 2020. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol, 20, 397-398.
  • Ahmadi P, Hartjen P, Kohsar M, Kummer S, et al., 2020. Defining the CD39/CD73 axis in SARS-CoV-2 infection: The CD73(-) phenotype identifies polyfunctional cytotoxic lymphocytes. Cells, 9.
  • Akdis CA, and Blaser K, 2000. Mechanisms of allergen-specific immunotherapy. Allergy, 55, 522-530.
  • Altmann DM, Boyton RJ, 2020. SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Sci Immunol, 17, 5, 49
  • Arslan H, Musabak, U, Ayvazoglu Soy EH, Kurt Azap O, et al., 2020. Incidence and immunologic analysis of coronavirus disease (COVID-19) in hemodialysis patients:A single-center experience. Exp Clin Transplant, 18, 275-283.
  • Arvin AM, Fink K, Schmid MA, Cathcart A, et al., 2020. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature, 584,353-363.
  • Azkur AK (2020a). COVID-19 ve hayvanlar. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 11, 49-60.
  • Azkur AK, Akdis M, Azkur D, Sokolowska M, et al., 2020. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 75, 1564- 1581.
  • Azkur AK, Aksoy E, 2020b.Yeni bir koronavirüs:2019-nCoV. Anadolu İzlenimleri, 12-15.
  • Azkur AK, Azkur D, Aksoy E, 2020c. Yeni bir pandemi; SARSCoV-2 virüsünün neden olduğu COVID-19 hastalığı. Anadolu İzlenimleri, 8-13.
  • Azkur AK, Kim B, Suvas S, Lee Y, et al., 2005. Blocking mouse MMP-9 production in tumor cells and mouse cornea by short hairpin (sh) RNA encoding plasmids. Oligonucleotides, 15, 72-84.
  • Bao J, Li C, Zhang K, Kang H, et al., 2020. Comparative analysis of laboratory indexes of severe and non-severe patients infected with COVID-19. Clin Chim Acta, 509, 180-194.
  • Bigelow BF, Tang O, Barshick B, Peters M, et al. 2020. Outcomes of universal COVID-19 testing following detection of incident cases in 11 long-term care facilities. JAMA Intern Med.
  • Bolat Y, Doymaz MZ, 1998. Veteriner Viroloji, Elazığ.
  • Bonini S, Maltese G, 2020. COVID-19 clinical trials: Quality matters more than quantity. Allergy.
  • Cai Q, Huang D, Ou P, Yu H, et al., 2020a. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy, 75, 1742-1752.
  • Cai X, Ma Y, Li S, Chen Y, et al. 2020b. Clinical characteristics of 5 COVID-19 cases with non-respiratory symptoms as the first manifestation in children. Front Pediatr, 8, 258.
  • Chen R, Sang L, Jiang M, Yang Z, et al. 2020. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol 146, 89-100.
  • Choudhury A, Mukherjee S, 2020. In silico studies on the comparative characterization of the interactions of SARSCoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol.
  • Chu H, Chan JF, Wang Y, Yuen TT, et al., 2020. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis, 12, 1400-1409.
  • Chua RL, Lukassen S, Trump S, Hennig BP, et al., 2020. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol, 38, 970-979.
  • Demaria O, Carvelli J, Batista L, Thibult ML, et al., 2020. Identification of druggable inhibitory immune checkpoints on Natural Killer cells in COVID-19. Cell Mol Immunol, 17, 995-997.
  • Duijf PHG, 2020. Baseline pulmonary levels of CD8+ T cells and NK cells inversely correlate with expression of the SARS-CoV-2 entry receptor ACE2. bioRxiv.
  • Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, et al., 2020. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe, 27, 992-1000 e1003.
  • Gimenez E, Albert E, Torres I, Remigia MJ, et al., 2020. SARSCoV-2-reactive interferon-gamma-producing CD8+ T cells in patients hospitalized with coronavirus disease 2019. J Med Virol.
  • Hadjadj J, Yatim N, Barnabei L, Corneau A, et al., 2020. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 7, 369, 718-724.
  • Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, et al., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181, 271-280 e278.
  • Huang W, Berube J, McNamara M, Saksena S, et al., 2020. Lymphocyte subset counts in COVID-19 patients: A metaanalysis. Cytometry A, 97, 772-776.
  • Ibarrondo FJ, Fulcher JA, Goodman-Meza D, Elliott J, et al., 2020. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N Engl J Med, 383, 1085-1087.
  • Jesenak M, Brndiarova M, Urbancikova I, Rennerova Z, et al., 2020. Immune parameters and COVID-19 infection - associations with clinical severity and disease prognosis. Front Cell Infect Microbiol, 10, 364.
  • Jiang M, Guo Y, Luo Q, Huang Z, et al., 2020a. T-cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of coronavirus disease 2019. J Infect Dis, 222, 198-202.
  • Jiang S, Hillyer C, Du L, 2020b. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol, 41, 355-359.
  • Jiang Y, Wei X, Guan J, Qin S, et al., 2020c. COVID-19 pneumonia: CD8(+) T and NK cells are decreased in number but compensatory increased in cytotoxic potential. Clin Immunol, 218, 108516.
  • Karamloo F, Konig R, 2020. SARS-CoV-2 immunogenicity at the crossroads. Allergy, 75, 1822-1824.
  • Kim D, Lee JY, Yang JS, Kim JW, et al., 2020. The architecture of SARS-CoV-2 transcriptome. Cell, 181, 914-921 e910.
  • Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, et al., 2020. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol, 5.
  • Lamers MM, Beumer J, van der Vaart J, Knoops K, et al., 2020. SARS-CoV-2 productively infects human gut enterocytes. Science, 369, 50-54.
  • Lan J, Ge J, Yu J, Shan S, et al., 2020. Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215-220.
  • Lee JS, Park S, Jeong HW, Ahn JY, et al., 2020. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol, 5.
  • Li JY, Liao CH, Wang Q, Tan YJ, et al., 2020. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res, 286, 198074.
  • Li Y, Chen M, Cao H, Zhu Y, et al., 2013. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes Infect, 15, 88-95.
  • Liu Y, Yang Y, Zhang C, Huang F, et al., 2020. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci, 63, 364- 374.
  • Long QX, Tang XJ, Shi QL, Li Q, et al., 2020. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med, 26, 1200-1204.
  • Lucas C, Wong P, Klein J, Castro TBR, et al., 2020. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 584, 463-469.
  • Lucchesi A, Silimbani P, Musuraca G, Cerchione C, et al., 2020. Clinical and biological data on the use of hydroxychloroquine against SARS-CoV- 2 could support the role of the NLRP3 inflammasome in the pathogenesis of respiratory disease. J Med Virol, 1-3.
  • Mantlo E, Bukreyeva N, Maruyama J, Paessler S, et al., 2020. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res, 179, 104811.
  • Mathew D, Giles JR, Baxter AE, Oldridge DA, et al., 2020. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 369, eabc8511.
  • Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, et al., 2020. Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4 (+) T cells. bioRxiv.
  • Mick E, Kamm J, Pisco AO, Ratnasiri K, et al., 2020. Upper airway gene expression differentiates COVID-19 from other acute respiratory illnesses and reveals suppression of innate immune responses by SARS-CoV-2. medRxiv.
  • Mirzaei R, Karampoor S, Sholeh M, Moradi P, et al., 2020. A contemporary review on pathogenesis and immunity of COVID-19 infection. Mol Biol Rep, 47, 5365-5376.
  • Murphy M, Estcourt L, Grant-Casey J, Dzik S, 2020. International survey of trials of convalescent plasma to treat COVID-19 infection. Transfus Med Rev, 34, 151-157.
  • Oja AE, Saris A, Ghandour CA, Kragten NAM, et al., 2020. Divergent SARS-CoV-2-specific T and B cell responses in severe but not mild COVID-19. bioRxiv, 159202.
  • Pavel AB, Wu J, Renert-Yuval Y, Del Duca E, et al., 2020. SARSCoV-2 receptor ACE2 protein expression in serum is significantly associated with age. Allergy, 1-4.
  • Peng Y, Mentzer AJ, Liu G, Yao X, et al., 2020. Broad and strong memory CD4 (+) and CD8 (+) T cells induced by SARSCoV-2 in UK convalescent COVID-19 patients. Nat Immunol.
  • Piechotta V, Chai KL, Valk SJ, Doree C, et al., 2020. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev, 7, CD013600.
  • Prajapat M, Sarma P, Shekhar N, Prakash A, et al., 2020. Update on the target structures of SARS-CoV-2: A systematic review. Indian J Pharmacol, 52, 142-149.
  • Qin C, Zhou L, Hu Z, Zhang S, et al.,2020. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis, 71, 762-768.
  • Radzikowska U, Ding M, Tan G, Zhakparov D, et al., 2020. Distribution of ACE2, CD147, CD26 and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy.
  • Riggioni C, Comberiati P, Giovannini M, Agache I, et al., 2020. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy.
  • Sette A, Crotty S, 2020. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns.Nat Rev Immunol, 20, 457-458.
  • Shah A, 2020. Novel coronavirus-induced NLRP3 inflammasome activation: a potential drug target in the treatment of COVID-19. Front Immunol 11, 1021.
  • Shi H, Wang W, Yin J, Ouyang Y, et al., 2020. The inhibition of IL-2/IL-2R gives rise to CD8(+) T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia. Cell Death Dis, 11, 429.
  • Shin D, Mukherjee R, Grewe D, Bojkova D, et al., 2020. Papainlike protease regulates SARS-CoV-2 viral spread and innate immunity. Nature.
  • Silveira MF, Barros AJD, Horta BL, Pellanda LC, et al., 2020. Population-based surveys of antibodies against SARSCoV-2 in Southern Brazil. Nat Med 26, 1196-1199.
  • Stanifer ML, Kee C, Cortese M, Zumaran CM, et al., 2020. Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep, 32, 107863.
  • Sumbria D, Berber E, Rouse BT, 2019. Factors affecting the tissue damaging consequences of viral infections. Front Microbiol, 10, 2314.
  • Suvas S, Azkur AK, Kim BS, Kumaraguru U, et al., 2004. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol, 172, 4123-4132.
  • Thoms M, Buschauer R, Ameismeier M, Koepke L, et al., 2020. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 369, 1249-1255.
  • Tizard I, 2008. Veterinary immunology : An Introduction, Philadelphia, United States: Elsevier - Health Sciences Division. Totura AL, Whitmore A, Agnihothram S, Schafer A, et al., 2015. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus ınfection. mBio 6, e00638- 00615.
  • Wang F, Nie J, Wang H, Zhao Q, et al., 2020a. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis, 221, 1762-1769.
  • Wang N, Zhan Y, Zhu L, Hou Z, et al., 2020b. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe, 28, 455-464.e2.
  • Wang X, Xu W, Hu G, Xia S, 2020c. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol.
  • Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, et al., 2020. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol, 5(48), eabd2071.
  • Xie L, Wu Q, Lin Q, Liu X, et al., 2020a. Dysfunction of adaptive immunity is related to severity of COVID-19: a retrospective study. Ther Adv Respir Dis, 14, 1753466620942129.
  • Xie X, Muruato A, Lokugamage KG, Narayanan K, et al. 2020b. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe, 27, 841-848 e843.
  • Yan R, Zhang Y, Li Y, Xia L et al., 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367, 1444-1448.
  • Yang D, Chu H, Hou Y, Chai Y, et al., 2020. Attenuated interferon and pro-inflammatory response in SARS-CoV-2- infected human dendritic cells is associated with viral antagonism of STAT1 phosphorylation. J Infect Dis, 222, 734-745.
  • Yaqinuddin A, Kashir J, 2020. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents. Med Hypotheses, 140, 109777.
  • Yuan M, Wu NC, Zhu X, Lee CD, et al., 2020. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science, 368, 630-633.
  • Yuen CK, Lam JY, Wong WM, Mak LF, et al., 2020. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect, 9, 1418-1428.
  • Zhang JJ, Cao YY, Tan G, Dong X, et al., 2020a. Clinical, radiological and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy.
  • Zhang JJ, Dong X, Cao YY, Yuan YD, et al., 2020b. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 75, 1730-1741.
  • Zhang Y, Kutateladze TG, 2020. Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2. Nat Commun, 11, 2920.
  • Zhao J, Yuan Q, Wang H, Liu W, et al. 2020. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis.
  • Zheng M, Gao Y, Wang G, Song G, et al., 2020. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol, 17, 533-535.
  • Zhou Z, Ren L, Zhang L, Zhong J, et al., 2020. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe, 27, 883-890 e882.
  • Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, et al., 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 181, 1016-1035 e1019.
  • Zost SJ, Gilchuk P, Case JB, Binshtein E, et al., 2020. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 584, 443-449.