Glenfatik sistemin yapısı, fonksiyonları ve klinik açıdan önemi

Glenfatik sistem, yeni keşfedilen bir atık temizleme sistemidir. Merkezi sinir sisteminden (MSS) metabolitlerin ve çözünen proteinlerin aktif bir şekilde uzaklaştırılmasını sağlar. Astrositler ve bunların sitoplazmik uzantılarında yer alan Aquaporin-4 su kanalları (AQP-4) tarafından oluşturulan bu sistem benzersiz bir perivasküler kanal ağına sahiptir. Bu sistemin uyku sırasında aktivite göstermesi ve uyanık olma sürecinde fonksiyon gösterememesi dikkat çekici bulunmuştur. Mevcut sistemin uyku durumunda fonksiyon göstermesi ve buna bağlı olarak MSS’den nörotoksik atık ürünlerin uzaklaştırılması biyolojik uyku ihtiyacının önemini ortaya koymaktadır. Glenfatik sistem kavramı nispeten yeni bir kavram olduğundan, bu derlemede temel yapısal unsurlarını, fonksiyonlarını ve belli bazı nörodejeneratif hastalıklarla olan ilişkisine bakarak klinik açıdan önemini değerlendireceğiz. Ayrıca, çeşitli hastalıklarda fonksiyonun baskılandığını ve glenfatik sistemdeki işlevsel yetersizliğin ne gibi hastalıklara sebep olabileceğini gösteren çalışmalar hakkında bilgi vereceğiz.

The structure, functions and clinical significance of the glymphatic system

The glymphatic system is a newly discovered waste cleaning system. It provides active removal of metabolites and soluble proteins from the central nervous system (CNS). This system, formed by Aquaporin- 4 water channels (AQP-4) located on astrocytes and their cytoplasmic extensions, has an unlike perivascular canal network. It is remarkable that this system is active during sleep and cannot acts during the wakefulness process. The functioning of the current system in sleep state and the removal of neurotoxic waste products from the CNS accordingly reveal the importance of the biological requirement for sleep. Since the concept of the glymphatic system is a relatively new concept, we will evaluate its clinical significance in this review by looking at its basic structural elements, functions, and relationship with some certain neurodegenerative diseases. We will give information about some research showing that various diseases causing the functional impairment of the glymphatic system and also which diseases the functional impairment of the glymphatic system may cause.

___

  • Aalling N, Munk ASF, Lundgaard I, Nedergaard M, 2017. The Glymphatic system. Short Course, 27.
  • Abbott NJ, 2004. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int, 45, 545–552.
  • Abbott NJ, Rönnbäck L, Hansson E, 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 7, 41–53.
  • Agre P, King LS, Yasui M, Guggino WB, et al., 2002. Aquaporin water channels–from atomic structure to clinical medicine. J Physiol, 542(1), 3-16.
  • Aspelund A, Antila S, Proulx ST, Karlsen TV, et al., 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med, 212, 991–999.
  • Bacyinski A, Xu M, Wang W, Hu J, 2017. The paravascular pathway for brain waste clearance: Current understanding, significance and controversy. Front Neuroanat, 11, 101.
  • Banizs B, Pike MM, Millican CL, Ferguson WB, et al., 2005. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development, 132, 5329–39.
  • Beggs CV, 2013. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med, 11, 142.
  • Benveniste H, Liu X, Koundal S, Sanggaard S, et al., 2019. The glymphatic system and waste clearance with brain aging. Gerontology, 65, 106–119.
  • Berridge CW, Waterhouse BD, 2003. The locus coeruleusnoradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev, 42, 33–84.
  • Bucchieri F, Farina F, Zummo G, Cappello F, 2015. Lymphatic vessels of the dura mater: A new discovery? J Anat, 227, 702–703.
  • Bradbury MW, Cserr HF, Westrop RJ, 1981. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol, 240, F329–F336.
  • Bradbury MW, Westrop RJ, 1983. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol, 339, 519–534.
  • Brodziak A, Rózyk-Myrta A, Wolinska A, 2017. In search for symptoms of ımpaired function of glymphatic system in older people. J Gerontol Geriatr Res, 6(429), 2.
  • Chen RL, Kassem NA, Redzic ZB, Chen CP, et al., 2009. Agerelated changes in chorid plexus and blood-cerebrospinal fluid barrier function in the sheep. Exp Gerontol, 44, 289–296.
  • Cserr HF, Cooper DN, Suri PK, Patlak CS, 1981. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol, 240, F319–F328.
  • Colombo JA, Reisin HD, 2004. Interlaminar astroglia of the cerebral cortex: A marker of the primate brain. Brain Res, 1006 (1), 126–131.
  • Colombo JA, Yáñez A, Puissant V, Lipina S, 1995. Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res, 40(4), 551–556.
  • Damkier HH, Brown PD, Praetorius J, 2013. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev, 93, 1847–92.
  • Del Zoppo GJ, Moskowitz M, Nedergaard M, 2016. The neurovascular unit and responses to ischemia, In: Stroke: pathophysiology, diagnosis, and management, Ed:Grotta J, Albers G, Broderick J, Kasner S, Lo E, Medelow A, Sacco R, Wong L, Yedinci baskı, Elsevier, Amsterdam, Netherlands, p. 90–101.
  • Diren F, Civelek E, Kabataş S, 2020. Beyin immünolojisi ve kafa travmalarında nöroinflamasyon. Türk Nöroşir Derg, 30(2), 209-216.
  • Eide PK, Ringstad G, 2018. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab, 39(7), 1355-68.
  • Elvsashagen T, Norbom LB, Pedersen PO, Quraishi SH, et al., 2015. Widespread changes in White matter microstructure after a day of waking and sleep deprivation. PLoS One, 10, e0127351.
  • Engelhardt B, Sorokin L, 2009. The blood–brain and the blood– cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol, 31(4), 497-511.
  • Fleischman D, Berdahl JP, Zaydlarova J, Stinnett S, et al., 2012. Cerebrospinal fluid pressure decreases with older age. PLoS One, 7(12), e52664.
  • Földi M, Gellert A, Kozma M, Poberai M, Zoltan OT, Csanda E, 1966. New contributions to the anatomical connections of the brain and the lymphatic system. Acta Anat (Basel), 64, 498–505. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, et al., 2014. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke, 45, 3092–6.
  • Ganong WF, 1999. The general and cellular basis of medical physiology, In: Review of Medical Physiology, Ed; Ganong WF, Nineteenth Edition, Appleton&Lange, Stamford, Connecticut, USA, pp; 1-46.
  • Gartner LP, 2017. Circulatory System, In: Textbook of Histology, Ed; Gartner LP, Fourth Edition, Elsevier, Philadelphia, PA, USA, pp; 287-310.
  • Griemsmann S, Höft SP, Bedner P, Zhang J, et al., 2015. Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cereb Cortex, 25(10), 3420–3433.
  • Groothuis DR, Vavra MW, Schlageter KE, Kang EW, et al., 2007. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab, 27, 43-56.
  • Hablitz LM, Vinitsky HS, Sun Q, Staeger FF, et al., 2019. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv, 5, eaav5447.
  • Hadaczek P, Yamashita Y, Mirek H, Tamas L, et al., 2006. The “Perivascular Pump” Driven by Arterial Pulsation Is a Powerful Mechanism for the Distribution of Therapeutic Molecules within the Brain. Mol Ther, 14, 69–78.
  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, et al., 2013. Cerebral arterial pulsation drives paravascular CSFinterstitial fluid exchange in the murine brain. J Neurosci, 33(46), 18190–18199.
  • Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, et al., 2014. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci, 34, 16180– 16193.
  • Iliff JJ, Wang M, Liao Y, Plogg BA, et al., 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med, 4, 147ra111.
  • Jessen NA, Munk AS, Lundgaard I, Nedergaard M, 2015. The glymphatic system: a beginner’s guide. Neurochem Res, 40(12), 2583–2599.
  • Jiang C, Zhang L, Zou C, Long X, et al., 2014. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging. PLoS One, 9, e84822.
  • Jiang Q, Zhang L, Ding G, Davoodi-bojd E, et al., 2016. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab, 37(4),1326- 37.
  • Johanson CE, Duncan J, Klinge PM, Brinker T, et al., 2008. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res, 5(10), 1743- 8454.
  • Ju YES, McLeland JS, Toedebusch CD, Xiong C, et al., 2013. Sleep quality and preclinical Alzheimer disease. JAMA Neurol, 70, 587–93.
  • Keep RF, Jones HC, 1990. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res, 56, 47–53.
  • Kress BT, Iliff JJ, Xia M, Wang M, et al., 2014. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol, 76(6), 845–861.
  • Kulik T, Kusano Y, Aronhime S, 2008. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology, 55, 281–8.
  • Lecco V, 1953. Di una probabile modificazione delle fissure linfatiche della della parte dei seni venosi della dura madre. Arch Ital Otol Rinol Laringol, 64, 287–96.
  • Lee H, Xie L, Yu M, Kang H, et al., 2015. The effect of body posture on brain glymphatic transport. J Neurosci, 35(31), 11034–11044.
  • Lenck S, Radovanovic I, Nicholson P, Hodaie M, et al., 2018. Idiopathic intracranial hypertension: the veno glymphatic connections. Neurology, 91, 515–22.
  • Li J, Zhou J, Shi Y, 1996. Scanning electron microscopy of human cerebral meningeal stomata. Ann Anat, 178, 259–261.
  • Louveau A, Plog BA, Antila S, Alitalo K, et al., 2017. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest, 127(9), 3210-3219.
  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, et al., 2015. Structural and functional features of central nervous system lymphatic vessels. Nature, 523, 337–341.
  • Lukic IK, Gluncic V, Ivkic G, Hubenstorf M, et al., 2003. Virtual dissection: a lesson from the 18th century. Lancet, 362, 2110–2113.
  • Lundgaard I, Li B, Xie L, Kang H, et al., 2015. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun, 6, 6807.
  • Mader S, Brimberg L, 2019. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells, 8(2), 90.
  • Madsen PL, Schmidt JF, Wildschiødtz G, Friberg L, et al., 1991. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid- eye-movement sleep. J Appl Physiol, 70, 2597–2601.
  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP, 2010. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia, 58(9), 1094–1103.
  • Matyash V, Kettenmann H, 2010. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev, 63(1), 2–10.
  • Mendelsohn AR, Larrick JW, 2013. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res, 16(6), 518-523.
  • Mestre H, Hablitz LM, Xavier AL, Feng W, et al., 2018. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife, 7, e40070.
  • Nielsen S, King LS, Christensen BM, Agre P, 1997. Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol Cell Physiol, 273(5), C1549-C61.
  • Nilsson C, Lindvall-Axelsson M, Owman C, 1992. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Rev, 17, 109–138.
  • Oberheim NA, Takano T, Han X, He W, et al., 2009. Uniquely hominid features of adult human astrocytes. J Neurosci, 29(10), 3276–3287.
  • O'Donnell J, Zeppenfeld D, McConnell E, Pena S, et al., 2012. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res, 37, 2496–2512.
  • Ovalle WK, Nahirney PC, 2013. Nervous Tissue, In: Netter’s Essential Histology, Ed; Ovalle WK and Nahirney PC, Second Edition, Elsevier Saunders, Philadelphia, PA, USA, pp; 101-130.
  • Peng W, Achariyar TM, Li B, Liao Y, et al., 2016. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis, 93, 215–225.
  • Plog BA, Dashnaw ML, Hitomi E, B Peng, et al., 2015. Biomarkers of traumatic ınjury are transported from brain to blood via the glymphatic system. J Neurosci, 35, 518–26.
  • Plog BA, Nedergaard M, 2018. The glymphatic system in CNS health and disease: past, present and future. Annu Rev Pathol, 13, 379–394.
  • Rangroo Thrane V, Thrane AS, Plog B, Thiyagarajan M, et al., 2013. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep, 3, 2582.
  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S, 1998. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proceedings of the National Academy of Sciences, 95(20), 11981-86.
  • Ross CA, Poirier MA, 2004. Protein aggregation and neurodegenerative disease. Nat Med, 10(Suppl 1), 10–7.
  • Sabbatini M, Barili P, Bronzetti E, Zaccheo D, et al., 1999. Agerelated changes of glial fibrillary acidic protein immunoreactive astrocytes in the rat cerebellar cortex. Mech Ageing Dev, 108, 165–172.
  • Seifert G, Henneberger C, Steinhäuser C, 2018. Diversity of astrocyte potassium channels: An update. Brain Research Bulletin, 136, 26–36. hr Smith AJ, Yao X, Dix JA, Jin BJ, et al., 2017. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4- independent solute transport in rodent brain parenchyma. Elife, 6, e27679.
  • Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, et al., 2014. Phenotypic heterogeneity and plasticity of Isocortical and hippocampal astrocytes in the human brain. J Neurosci, 34(6), 2285–2298.
  • Sykova E, Nicholson C, 2008. Diffusion in brain extracellular space. Physiol Rev, 88, 1277–1340.
  • Taş F, Erdoğan E, 2020. Sıçan ependim hücrelerinde Aquaporin 4 kanallarının immünohistokimyasal dağılımı ve glimfatik sisteme etkisi. Ahi Evran Med J, 4(2), 41-47.
  • Thrane VR, Thrane AS, Plog BA, Thiyagarajan M, et al., 2013. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Scientific reports, 3(1), 1-5.
  • Thrane AS, Rangroo Thrane V, Nedergaard M, 2014. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci, 37, 620–628.
  • Verkhratsky A, Parpura V, 2015. Physiology of astroglia: Channels, receptors, transporters, ion signaling and gliotransmission. Colloquium Series on Neuroglia in Biology and Medicine: From Physiology to Disease, 2 (2), 1–172.
  • Verkman A, Binder DK, Bloch O, Auguste K, et al., 2006. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophy Acta Biomembr, 1758(8), 1085-93.
  • Verkman A, Mitra AK, 2000. Structure and function of aquaporin water channels. American Journal of Physiology-Renal Physiology, 278, 1, F13-F28.
  • Vernadakis A, 1996. Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol, 49, 185–214.
  • Walz W, 1989. Role of glial cells in the regulation of the brain ion microenvironment. Prog Neurobiol, 33, 309–333.
  • Wang M, Ding F, Deng S, Guo X, et al., 2017. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci, 37, 2870–7.
  • Wang Z, Ying Z, Bosy-Westphal A, Zhang J, et al., 2012. Evaluation of specific metabolic rates of major organs and tissues: Comparison between nonobese and obese women. Obesity, 20 (1), 95–100.
  • Xie L, Kang H, Xu Q, Chen MJ, et al., 2013. Sleep drives metabolite clearance from the adult brain. Science, 342 (6156), 373–377.
  • Yang L, Kress BT, Weber HJ, Thiyagarajan M, et al., 2013. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med, 11, 107.
  • Zhang ET, Inman CB, Weller RO, 1990. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat, 170, 111–123.
  • Zieman SJ, Melenovsky V, Kass DA, 2005. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arter Thromb Vasc Biol, 25, 932–943.
  • Zlokovic BV, 2011. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci, 12, 723–38.
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi
Sayıdaki Diğer Makaleler

Sexual dimorphism in the sheep corpus callosum using 3 tesla MRI

Sedat Aydoğdu, Mustafa Koplay, Emrullah Eken

Zaman serisi modelleri ile Hindistan'daki yumurta üretiminin modellenmesi ve tahmin edilmesi

Aynur Yonar, Harun Yonar, Mostafa Abotaleb, Mostafa Abotaleb, Amr Badr, Abdullah Mohammad Ghazi Al Khatib, Kadir Karakaya, Vinti Dhaka

Koyunlarda artan dozlarda uygulanan meloksikamın hematolojik, biyokimyasal ve hemostatik kan parametrelerine etkilerinin değerlendirilmesi

Hüseyin Güngör, Fulya Altınok Yipel

Veteriner hekimliği tarihi ve deontoloji alanı akademisyenlerinin bilimsel çalışmalarının bibliyometrik analizi (1950-2015)

Ali Yiğit, Özgül Küçükaslan

Streptozotosin ile diyabet oluşturulan ratlarda Koenzim Q 10’un testis dokusu üzerine etkileri

Yasemin Öznurlu, Tuğba Özaydın, Emrah Sur

Avrupa Veteriner Hekimliği Eğitim Kurumları Birliği’nin (EAEVE) güncel parametreleri çerçevesinde Türkiye’de veteriner hekimliği eğitiminde akreditasyon uygulamalarına bir örnek

Nigar Yerlikaya, Özgül Küçükaslan

Plasental retansiyonlu süt ineklerinde hepatokinlerin, proinflamatorik sitokinlerin, oksidatif stres ve enerji ile ilgili metabolizma analitlerinin ve hematolojik parametrelerin değerlendirilmesi

Efe Kurtdede, Erdal Kara, Ufuk Kaya, Taha Burak Elifoğlu

Selçuk Üniversitesi deneysel tıp araştırma ve uygulama merkezindeki wistar ratların biyokimyasal ve hematolojik profili

Bahadır Öztürk, Duygu Eryavuz Onmaz, İlhan Çiftçi, Büşra Ecer, Salih Metin Gökyaprak

Glenfatik sistemin yapısı, fonksiyonları ve klinik açıdan önemi

Emrah Sur, Tansu Kuşat

Kırsal kalkınma kapsamında, genç çiftçi projeleri ile desteklenen küçükbaş hayvancılık işletmelerinin sosyo-ekonomik analizi

Engin Sakarya, Muharrem Satar