Sexual dimorphism in the sheep corpus callosum using 3 tesla MRI

Sexual dimorphism in the sheep corpus callosum using 3 tesla MRI

Aim: This study aims to determine the morphological and morphometric differences of the corpus callosum in terms of sex using high-resolution images obtained from formalin-fixed sheep brains by 3T Magnetic Resonance Imaging (MRI). Materials and Methods: In the study, a total of 18 adult healthy Akkaraman sheep brains (9 females and 9 males), which had no anomaly and were fixed with formaldehyde, were used. Morphometric measurements in sheep brains were performed on T2-weighted images obtained from 3T MRI. First, the midsagittal cross-sectional area of the corpus callosum was calculated using MIMICS. Before morphometric measurements, images were converted from DICOM format to NIfTI format in the MRcronGL. Then, the normalization of the images were performed using the standard template in the ITK-SNAP. After that images were opened in the ITK-SNAP, and morphometric measurements were performed in genu corporis callosi, truncus corporis callosi, and splenium corporis callosi. Results: In sheep, the lower surface of the truncus corporis callosi, which forms the roof of the ventriculus lateralis, was more concave than dog and cat, and flatter than human, horse and rabbit. There was no sexual dimorphism in corpus callosum length, midsagittal corpus callosum cross-sectional area, genu corporis callosi width, truncus corporis callosi width and splenium corporis callosi width. Similarly, no sexual dimorphism was observed in the ratio between midsagittal corpus callosum cross-sectional area and brain weight and volume. However, it was observed that the ratio between surface area and volume was very close to the difference frequently encountered in this parameter in studies conducted in humans and other mammals. Conclusion: It is thought that the findings obtained from healthy sheep brains in this study can be used in neurodegenerative disease models created in sheep in neuroscience studies and experimental studies.

___

  • Al-Hadidi MT, Kalbouneh HM, Ramzy A, Al Sharei A, et al., 2021. Gender and age-related differences in the morphometry of corpus callosum: MRI study. Eur J Anat, 25(1), 15-24.
  • Alexander AL, Lee JE, Lazar M, Boudos R, et al., 2007. Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage, 34 (1), 61-73.
  • Allouh MZ, Al Barbarawi MM, Ali HA, Mustafa AG, et al., 2020. Morphometric analysis of the corpus callosum according to age and sex in Middle Eastern Arabs: racial comparisons and clinical correlations to autism spectrum disorder. Front Syst Neurosci, 14, 1-11.
  • Ardekani BA, Figarsky K, Sidtis JJ, 2013. Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb cortex, 23 (10), 2514-2520.
  • Aydınlıoglu A, Arslan K, Ragbetli MÇ, Erdogan AR, et al., S, 2000. Sex differences in dog corpus callosum. Eur J Morphol, 38(1), 63-67.
  • Bishop KM, Wahlsten D, 1997. Sex differences in the human corpus callosum: myth or reality? Neurosci Biobehav Rev, 21(5), 581-601.
  • Braak H, Braak E, Strothjohann M, 1994. Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci Lett, 171(1-2), 1-4.
  • Capitanio JP, Emborg ME, 2008. Contributions of non-human primates to neuroscience research. Lancet, 371(9618), 1126-1135.
  • DeLacoste-Utamsing C, Holloway RL, 1982. Sexual dimorphism in the human corpus callosum. Science, 216(4553), 1431-1432.
  • Desimone R, 1992. The physiology of memory: recordings of things past. Science, 258, 245-246.
  • Di Paola M, Spalletta G, Caltagirone C, 2010. In vivo structural neuroanatomy of corpus callosum in Alzheimer's disease and mild cognitive impairment using different MRI techniques: a review. J Alzheimers Dis, 20(1), 67-95.
  • Di Paola M, Luders E, Cherubini A, Sanchez-Castaneda C, et al., 2012. Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington's disease. Cereb cortex, 22(12), 2858- 2866.
  • Downhill Jr JE, Buchsbaum MS, Wei T, Spiegel-Cohen J, et al., 2000. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res, 42(3), 193-208.
  • Dursun N, 2008. Veteriner Anatomi III. Seventh edition, Me-disan Press, Ankara, Turkey, pp; 1-89.
  • Ella A, Keller M, 2015. Construction of an MRI 3D high resolution sheep brain template. Magn Reson Imaging, 33(10), 1329-1337.
  • Franklin MS, Kraemer GW, Shelton SE, Baker E, et al.,, 2000. Gender differences in brain volume and size of corpus callosum and amygdala of rhesus monkey measured from MRI images. Brain Res, 852(2), 263-267.
  • Frederiksen KS, Garde E, Skimminge A, Ryberg C, et al., 2011. Corpus callosum atrophy in patients with mild Alzheimer’s disease. JPND, 8(6), 476-482.
  • Griffiths PD, Batty R, Reeves MJ, Connolly DJ, 2009. Imaging the corpus callosum, septum pellucidum and fornix in children: normal anatomy and variations of normality. Neuroradiology, 51, 337-345.
  • Gupta E, Khan AA, Babu CR, Lalwani R, et al., 2011. Sexual dimorphism of splenial thickness of corpus callosum. Curr Neurobiol, 2(1), 63-66.
  • Hasan KM, Walimuni IS, Abid H, Wolinsky JS, et al., 2012. Multi‐modal quantitative MRI investigation of brain tissue neurodegeneration in multiple sclerosis. J Magn Reson Imaging, 35(6), 1300-1311.
  • Hellner‐Burris K, Sobieski CA, Gilbert VR, Phillips KA, 2010. Prey capture efficiency in brown capuchin monkeys (Cebus apella) is influenced by sex and corpus callosum morphology. Am J Primatol, 72(6), 502-508.
  • Herron TJ, Kang X, Woods DL, 2012. Automated measurement of the human corpus callosum using MRI. Front Neuroinform, 6, 1-15.
  • Jacobsen JC, Bawden CS, Rudiger SR, McLaughlan CJ, et al., 2010. An ovine transgenic Huntington's disease model. Hum Mol Genet, 19(10), 1873-1882.
  • Jason GW, Pajurkova EM, 1992. Failure of metacontrol: breakdown in behavioural unity after lesion of the corpus callosum and inferomedial frontal lobes. Cortex, 28(2), 241-260.
  • Lee W, Lee SD, Park MY, Foley L, et al., 2015. Functional and diffusion tensor magnetic resonance imaging of the sheep brain. BMC veterinary research, 11, 2-8.
  • Luders E, Thompson PM, Toga AW, 2010. The development of the corpus callosum in the healthy human brain. J Neurosci Res, 30(33), 10985-10990.
  • Manger P, Hemingway J, Haagensen M, Gilissen E, 2010. Cross-sectional area of the elephant corpus callosum: comparison to other eutherian mammals. Neuroscience, 167(3), 815-824.
  • Murray SJ, Black BL, Reid SJ, Rudiger SR, et al., 2019. Chemical neuroanatomy of the substantia nigra in the ovine brain. J Chem Neuroanat, 97, 43-56.
  • Ng WHA, Chan YL, Au KSA, Yeung KWD, et al., 2005. Morphometry of the corpus callosum in Chinese children: relationship with gender and academic performance. Pediatr Radiol, 35, 565-571.
  • Olivares R, Michalland S, Aboitiz F, 2000. Cross-species and intraspecies morphometric analysis of the corpus callosum. Brain Behav Evol, 55, 37-43.
  • Phillips KA, Sherwood CC, Lilak AL, 2007. Corpus callosum morphology in capuchin monkeys is influenced by sex and handedness. PLoS One, 2(8), e792.
  • Pieri V, Trovatelli M, Cadioli M, Zani DD, et al., 2019. In vivo diffusion tensor magnetic resonance tractography of the sheep brain: an atlas of the ovine white matter fiber bundles. Front Vet Sci, 6, 1-15..
  • Poltana P, Poulpanich N, Withyachumnarnkul B, Suriyaprapadilok L, et al., 2001. No significant sexual dimorphism of the corpus callosum in Thai subjects: a study using stained plastinated brain slices. Sci Asia, 27, 203-09.
  • Reid SJ, McKean NE, Henty K, Portelius E, et al., 2017. Alzheimer's disease markers in the aged sheep (Ovis aries). Neurobiol Aging, 58, 112-119.
  • Schlaug G, Jäncke L, Huang Y, Staiger JF, et al., 1995. Increased corpus callosum size in musicians. Neuropsychologia, 33(8), 1047-1055.
  • Shiino A, Chen Y-w, Tanigaki K, Yamada A, et al., 2017. Sexrelated difference in human white matter volumes studied: inspection of the corpus callosum and other white matter by VBM. Sci Rep, 7, 1-7.
  • Tan U, Kutlu N, 1993. Sexual dimorphism in linear measures of the corpus callosum in cats. Int J Neurosci, 73(3-4), 171- 181.
  • Unlu E, Bagcioglu E, Acay MB, Kacar E, et al., 2014. Magnetic resonance imaging study of corpus callosum abnormalities in patients with different subtypes of schizophrenia. S Afr J Psychol, 20(4), 146-152.
  • Walterfang M, Wood AG, Barton S, Velakoulis D, et al., 2009. Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuropsychopharmacol Biol Psychiatry, 33(6), 1050- 1057.
  • Witelson SF, 1985. The brain connection: the corpus callosum is larger in left-handers. Science, 229(4714), 665-668.
  • Woldehawariat G, Martinez PE, Hauser P, Hoover DM, et al., 2014. Corpus callosum size is highly heritable in humans, and may reflect distinct genetic influences on ventral and rostral regions. PloS One, 9(6), e99980.
  • Yushkevich PA, Piven J, Hazlett HC, Smith RG, et al., 2006. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31(3), 1116-1128.
  • Author Contributions Motivation / Concept: Emrullah Eken Design: Emrullah Eken, Sedat Aydoğdu Control/Supervision: Emrullah Eken Data Collection and / or Processing: Emrullah Eken, Mustafa Koplay
  • Analysis and / or Interpretation: Emrullah Eken, Sedat Aydoğdu Literature Review: Sedat Aydoğdu
  • Writing the Article : Emrullah Eken, Sedat Aydoğdu Critical Review: Emrullah Eken, Mustafa Koplay The Ethics Committee approved the study procedure of Selçuk University Faculty of Veterinary Medicine (Date: 25/04/2019 and Decision no: 2019/38)
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi
Sayıdaki Diğer Makaleler

Kırsal kalkınma kapsamında, genç çiftçi projeleri ile desteklenen küçükbaş hayvancılık işletmelerinin sosyo-ekonomik analizi

Engin Sakarya, Muharrem Satar

Koyunlarda artan dozlarda uygulanan meloksikamın hematolojik, biyokimyasal ve hemostatik kan parametrelerine etkilerinin değerlendirilmesi

Hüseyin Güngör, Fulya Altınok Yipel

Sivas ilinde laktasyon dönemindeki Kangal Akkaraman, Texel ve Île De France koyunlarında bazı hematolojik ve serum biyokimyasal değişkenlerin karşılaştırılması

Mehmet Ekici, Abdurrahman Takcı, Mehmet Buğra Kıvrak

Streptozotosin ile diyabet oluşturulan ratlarda Koenzim Q 10’un testis dokusu üzerine etkileri

Yasemin Öznurlu, Tuğba Özaydın, Emrah Sur

Veteriner hekimliği tarihi ve deontoloji alanı akademisyenlerinin bilimsel çalışmalarının bibliyometrik analizi (1950-2015)

Ali Yiğit, Özgül Küçükaslan

Selçuk Üniversitesi deneysel tıp araştırma ve uygulama merkezindeki wistar ratların biyokimyasal ve hematolojik profili

Bahadır Öztürk, Duygu Eryavuz Onmaz, İlhan Çiftçi, Büşra Ecer, Salih Metin Gökyaprak

Sexual dimorphism in the sheep corpus callosum using 3 tesla MRI

Sedat Aydoğdu, Mustafa Koplay, Emrullah Eken

Zaman serisi modelleri ile Hindistan'daki yumurta üretiminin modellenmesi ve tahmin edilmesi

Aynur Yonar, Harun Yonar, Mostafa Abotaleb, Mostafa Abotaleb, Amr Badr, Abdullah Mohammad Ghazi Al Khatib, Kadir Karakaya, Vinti Dhaka

Plasental retansiyonlu süt ineklerinde hepatokinlerin, proinflamatorik sitokinlerin, oksidatif stres ve enerji ile ilgili metabolizma analitlerinin ve hematolojik parametrelerin değerlendirilmesi

Efe Kurtdede, Erdal Kara, Ufuk Kaya, Taha Burak Elifoğlu

Avrupa Veteriner Hekimliği Eğitim Kurumları Birliği’nin (EAEVE) güncel parametreleri çerçevesinde Türkiye’de veteriner hekimliği eğitiminde akreditasyon uygulamalarına bir örnek

Nigar Yerlikaya, Özgül Küçükaslan