Su Ürünleri Aşılarında Nanoparçacıklar

Nanoteknoloji, atomların ve moleküllerin en küçük ölçeklerde ortaya çıkarılması ve uygulanması teknolojisine verilen isim olup genel olarak 1-100 nanometre (nm) arası boyutlara sahip malzeme veya cihazların geliştirilmesi veya değiştirilmesi çalışmalarını kapsamaktadır. Nanoteknolojinin tıbbi alandaki uygulamalarının gelişmesi sonrasında farklı şekillerde kullanılabilecek ilaç ve ilaç taşıyıcı nanoparçacıkları üretmek de mümkün hale gelmiştir. Su ürünleri yetiştiriciliğinde nanoteknolojinin su arıtımı, hastalıklarının tespiti ile kontrolü, besinlerin ve ilaçların verimli bir şekilde uygulanabilmesi ile hızlı hastalık tanısı, doğrudan hedefe yönelik ilaç ve aşı uygulamalarında da kullanılması söz konusudur. Biyoteknoloji ile yakın ilişkisi olan nanoteknoloji günümüzde büyük ilerleme kaydetmiş ve aşılama alanındaki uygulaması genişleyerek nanovaksinoloji adı verilen yeni bir bilim alanının oluşumunu sağlamıştır. Nanobiyoteknolojinin, geleneksel aşılama uygulamaları sonrasında organizmada oluşabilecek biyolojik, biyofiziksel ve biyomedikal sorunların üstesinden gelebilecek yeni nesil ve daha etkili aşıların geliştirilmesine olanak sağladığı düşünülmektedir. Bu derlemede ana hatlarıyla nanomalzemeler ve nanoteknolojinin su ürünleri alanında aşı uygulamalarındaki kullanımının açıklanması amaçlanmıştır

Nanoparticles in Aquaculture Vaccines

Nanotechnology is the name given to the technology of revealing and applying atoms and molecules at the smallest scales, and generally covers the development or modification of materials or devices with dimensions between 1-100 nanometers (nm). After the development of applications of nanotechnology in the medical field, it has become possible to produce drug and drug carrier nanoparticles that can be used in different ways. In aquaculture, nanotechnology is also used in water treatment, detection and control of diseases, efficient application of nutrients and drugs, rapid disease diagnosis, and direct targeted drug and vaccine applications. Nanotechnology, which has a close relationship with biotechnology, has made great progress today and its application in the field of vaccination has expanded and provided the formation of a new field of science called nanovaccinology. It is thought that nanobiotechnology allows the development of new generation and more effective vaccines that can overcome biological, biophysical and biomedical problems that may occur in the organism after traditional vaccination practices. In this review, it is aimed to explain the use of nanomaterials and nanotechnology in vaccine applications in the field of aquaculture.

___

  • Abbas WT. (2021) Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review. Environ Sci Pollut Res. 28, 7669-7690. https://doi.org/10.1007/s11356-020-12166-0.
  • Angulo C, Tello-Olea M, Reyes-Becerril M, Monreal-Escalante E, Hernandez-Adame L, Angulo M, Mazon-Suastegui JM. (2021) Developing oral nanovaccines for fish: a modern trend to fight infectious diseases. Rev Aquac. 13(3), 1172–1192. https:// doi. org/ 10. 1111/ raq. 12518.
  • Ashraf M, Aklakur M, Sharma R, Ahmad S, Khan M. (2011) Nanotechnology as a Novel Tool in Fisheries and Aquaculture Development: A Review. Iran J Energy Environ. 2(3), 258-261. doi: 10.5829/idosi.ijee.2011.02.03.2272.
  • Assefa A, Abunna F. (2018) Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Vet Med Int. 5432497, https://doi.org/10.1155/2018/5432497.
  • Ateş M, Demir V, İmamoğlu H. (2013) Nanoparçacıkların Özellikleri ve Akuatik Çevreye Etkisi. TZYMB Derg. 360, 52-59.
  • Behera T, Nanda PK, Mohanty C, Mohapatra D, Swain P, Das BK, Routray P, Mishra BK, Sahoo SK. (2010) Parenteral immunization of fish, Labeo rohita with Poly D, L-lactide-co-glycolic acid (PLGA) encapsulated antigen microparticles promotes innate and adaptive immune responses. Fish Shellfish Immunol. 28(2), 320-325. https://doi.org/10.1016/j.fsi.2009.11.009.
  • Bøgwald J, Dalmo RA. (2019) Reviewon Immersion Vaccines for Fish: An Update. Microorganisms. 7(12), 627. https://doi.org/10.3390/microorganisms7120627.
  • Can E, Kızak V, Kayım M, Seyhaneyıldız Can Ş, Kutlu B, Ateş M, Kocabaş M, Demirtaş N. (2011) Nanotechnological Applications in Aquaculture-Seafood Industries and Adverse Effects of Nanoparticles on Environment. J Mater Sci Eng. 5, 605-609.
  • Dadar M, Dhama K, Vakharia VN, Hoseinifar SH, Karthik K, Tiwari R, Khandia R, Munjal A, Salgado-Miranda C, Joshi SK. (2017) Advances in Aquaculture Vaccines Against Fish Pathogens: Global Status and Current Trends. Rev Fish Sci Aquac. 25(3), 184-217. DOI: 10.1080/23308249.2016.1261277.
  • Debnath S, Das S, Ghosh S, Pal P. (2019) Nanotechnology: A Novel Multi-Tasking Strategy for Aquaculture. Indian Farmer. 6(8), 573-578.
  • Dönmez E, Dolgun HT, Kırkan Ş. (2021) Nanopartiküler Aşılar. J Anatol Environ Animal Sci. 6(4), 578-584. https://doi.org/10.35229/jaes.970713.
  • Ergüden VE, Çiftci A. (2022) An Innovative Approach in The Field of Health: Nanoparticles/Nanomedicine. J Anatol Environ Animal Sci. 7(3), 304-313. https://doi.org/10.35229/jaes.1136335.
  • Fajardo C, Martinez-Rodriguez G, Blasco J, Mancera JM, Thomas B, De Donato M. (2022) Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquac and Fish. 7, 185-200. https://doi.org/10.1016/j.aaf.2021.12.006.
  • Gheibi Hayat SM, Darroudi M. (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol. 234(8), 12530-12536.
  • Gill P. (2013) Nanocarriers, nanovaccines, and nanobacteria as nanobiotechnological concerns in modern vaccines. Sci Iran. 20(3), 1003-1013. http://dx.doi.org/10.1016/j.scient.2013.05.012.
  • Giri SS, Kim SG, Kang JW, Kim SW, Kwon J, Lee SB, Jung WJ, Park SC. (2021) Applications of carbon nanotubes and polymeric micro-/nanoparticles in fish vaccinedelivery: progress and future perspectives. Rev Aqua. 13, 1844-1863. DOI: 10.1111/raq.12547.
  • Gombotz WR. (1998) Protein release from alginate matrices. Adv Drug Deliv Rev. 31, 267-285.
  • Gregory AE, Titball R, Williamson D. (2013) Vaccine Delivery Using Nanoparticles. Front Celld Infect Micr. 3(13), 1-13.
  • Hajizade A, Ebrahimi F, Salmanian AH, Arpanaei A, Amani J. (2014) Nanoparticles in vaccine development. J Appl Biotechnol Rep. 1(4), 125-134.
  • Haldar C, Nath S. (2020) Nanotechnology: A novel technique for aquaculture and fisheries development. Int J Fauna Biol Stud. 7(6), 23-27.
  • Hayat SMG, Darroudi M. (2019) Nanovaccine: A novel approach in immunization. J Cell Physiol, 234, 12530-12536.
  • Ji J, Torrealba D, Ruyra A, Roher N. (2015) Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology (Basel), 4(4), 664–696. https://doi. org/ 10. 3390/ biolo gy404 0664.
  • Ji Q, Wang S, Ma J, Liu Q. (2020) A review: Progress in the development of fish Vibrio spp. Vaccines. Immunol Lett. 226, 46-54. https://doi.org/10.1016/j.imlet.2020.07.002.
  • Kamalii A, Prabu E, Ruby E, Ahilan B. (2018) Advanced Developments in Fısh Vaccination. J Aquacult Trop. 33(1-2), 101-109.
  • Kaya Z. (2017) Peptit Yüklü Nano Aşı Formülasyonunun Toksoplasma gondii’ye Karşı Etkinliğinin in vivo Olarak İncelenmesi. Yüksek Lisans Tezi, YTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. (2014) Nanotechnology and vaccine development. Asian J Pharm Sci. 9, 227-235.http://dx.doi.org/10.1016/j.ajps.2014.06.002.
  • Ma J, Bruce TJ, Jones EM, Cain KD. (2019) A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms. 7, 569. DOI:10.3390/microorganisms7110569.
  • Mamo T, Poland GA. (2012) Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine. 30, 6609–6611.
  • Marangoz Ö, Yavuz, O. (2020) Nano-ilaç taşıma sistemleri ve toksikolojik değerlendirmeleri. Turk Hij Den Biyol Derg. 7(4), 509-526.
  • Kitiyodom S, Trullas C, Rodkhum C, Thompson KD, Katagiri T, Temisak S, Namdee K, Yata T, Pirarat N. (2021) Modulation of the mucosal immune response of red tilapia (Oreochromis sp.) against columnaris disease using a biomimetic-mucoadhesive nanovaccine. Fish Shellfish Immunol. 112, 81-91.
  • Mondal H, Thomas J. (2022) A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquac Int. 30, 1971-2000. https://doi.org/10.1007/s10499-022-00884-w.
  • Muktar Y, Tesfaye S, Tesfaye B. (2016) Present Status and Future Prospects of fish Vaccination: A Review. J Vet Sci Technol. 7(2), 299. doi:10.4172/2157-7579.1000299.
  • Myhr AI, Myskja BK. (2011) Precaution or integrated responsibility approach to nanovaccines in fish farming? A critical appraisal of the UNESCO precautionary principle. Nanoethics. 5, 73-86.
  • Nagaraju VT. (2019) Nanovaccines in Aquaculture. Arch Nanomed. 2(1). DOI: 10.32474/Anoaj.2019.02.000129.
  • Nasr-Eldahan S, Nabil-Adam A, Shreadah MA, Maher AM, Ali TES. (2021) A review article on nanotechnology in aquaculturesustainability as a novel tool in fish disease control. Aquac Int. 29, 1459-1480. https://doi.org/10.1007/s10499-021-00677-7.
  • Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. (2021) Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. Small, 17, 1-21. DOI: 10.1002/smll.202006000.
  • Pati R, Shevtsov M, Sonawane A. (2018) Nanoparticle Vaccines Against Infectious Diseases. Front Immunol. 9, 2224. doi: 10.3389/fimmu.2018.02224.
  • Rather MA, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya VL. (2011) Nanotechnology: A Novel Tool for Aquaculture and Fisheries Development A Prospective Mini-Review. Fish Aquac J. 2011, FAJ-16.
  • Rivas-Aravena A, Fuentes Y, Cartagena J, Brito T, Poggio V, La Torre J, Mendoza H, Gonzalez-Nilo F, Sandino AM, Spencer E. (2015) Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. Fish Shellfish Immun. 45(1), 157-166. https:// doi. org/ 10. 1016/j. fsi. 2015. 03. 033.
  • Sahdev P, Ochyl LJ, Moon JJ. (2014) Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharm Res. 31, 2563-2582. DOI 10.1007/s11095-014-1419-y.
  • Sarkar B, Mahanty A, Gupta SK, Choudhury AR, Daware A, Bhattacharjee S. (2022) Nanotechnology: A next-generation tool for sustainable aquaculture. Aquaculture. 546. https://doi.org/10.1016/j.aquaculture.2021.737330.
  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M. (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed.: Nanotechnol Biol Med. 12(3), 701-710. https:// doi. org/ 10. 1016/j. nano. 2015. 11. 005.
  • Sayıner Ö, Çomoğlu T. (2016) Nanotaşıyıcı sistemlerde hedeflendirme. Ankara Univ Eczacilik Fak Derg. 40(3), 62-79.
  • Sekhon BS. (2014). Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl. 7, 31-53.
  • Shah BR, Mraz J. (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac. 12, 925-942. doi: 10.1111/raq.12356.
  • Sinyakov MS, Dror M, Lublin-Tennenbaum T, Salzberg S, Margel S, Avtalion RR. (2006) Nano and microparticles as adjuvants in vaccine design: success and failure is related to host natural antibodies. Vaccine. 24, 6534-6541.
  • Smith DM, Simon JK, Baker Jr JR. (2013) Applications of nanotechnology for immunology. Nat Rev Immunol. 13, 592-605.
  • Smith JD, Morton LD, Ulery BD. (2015) Nanoparticles as synthetic vaccines. Curr Opin Biotechn. 34, 217-224. http://dx.doi.org/10.1016/j.copbio.2015.03.014.
  • Soliman WS, Shaapan RM, Mohamed LA, Gayed SS. (2019) Recent biocontrol measures for fish bacterial diseases, in particular to probiotics, bio-encapsulated vaccines, and phage therapy. Open Vet J. 9, 190-195.
  • Sommerset I, Krossoy B, Biering E, Frost P. (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines. 4(1), 89-101. doi: 10.1586/14760584.4.1.89.
  • Sosnik A. (2014) Alginate particles as platform for drug delivery by the oral route: state-of-the-art. ISRN Pharm. 2014, 1-17.
  • Susitharan V, Sindhu C. (2021) Nanotechnological Approaches in Aquaculture. Vigyan Varta. 2(9): 31-36.
  • Tian J, Yu J. (2011) Poly (lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol. 30, 109-117.
  • Tüylek Z. (2017) İlaç Taşıyıcı Sistemler ve Nanoteknolojik Etkileşim. Bozok Tıp Derg. 7(3), 89-98.
  • Vinay TN, Bhat S, Gon Choudhury T, Paria A, Jung MH, Shivani Kallappa G, Jung SJ. (2018) Recent advances in application of nanoparticles in fish vaccine delivery. Rev Fish Sci Aquac. 26(1), 29-41. Vural GU, Özer AY. (2015) Nükleer Tıpta İlaç Taşıyıcı Sistemler ve Teranostik Kullanımları. Nucl Med Semin. 2, 109-119.
  • Yue H, Ma G. (2015) Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine. 33(44), 5927-5936.
  • Zhang C, Wang GX, Zhu B. (2020) Application of antigen presenting cell‑targeted nanovaccine delivery system in rhabdovirus disease prophylactics using fish as a model organism. Nanobiotechnol. 18 (24), 1-13.
  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg APJ. (2014) Nanoparticle vaccines. Vaccine, 32, 327-337. http://dx.doi.org/10.1016/j.vaccine.2013.11.06.
Etlik Veteriner Mikrobiyoloji Dergisi-Cover
  • ISSN: 1016-3573
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1960
  • Yayıncı: Veteriner Kontrol Merkez Araştırma Enstitüsü Müdürlüğü
Sayıdaki Diğer Makaleler

Yersinia ruckeri İzolatlarında Biyofilm Oluşumunun ve Bazı Virulens Faktörlerinin Belirlenmesi

Esra DEMİRBAŞ, Cansu AKTAŞ, Volkan KAYDU, Enescan AKSOY, İlker HANCI, Ünver Oğuzhan TEKAY, Meltem ÖZER, Ertan Emek ONUK

Gıda Kaynaklı Staphylococcus aureus İntoksikasyonlarının Kontrolünde Bakteriyofaj Uygulamaları

Yeşim YONSUL TUNCER, Naim Deniz AYAZ

Ankara ve Kırıkkale yöresinde yetiştiriciliği yapılan tavşanlarda Eimeria türlerinin yaygınlığı ve morfolojik teşhisi

Sami GÖKPINAR, Sinem AKDENİZ, Gözde Nur AKKUŞ

Isı stresindeki süt ineklerinde farklı partikül boyutlu rasyonlar ve canlı maya katkısının enerji profiline etkisi

Çağlar OKULMUŞ, Hulusi AKÇAY, Necdet İlker İÇİL, Özhan TÜRKYILMAZ, Bahattin KOÇER

Japon bıldırcınları rasyonlarına ilave edilen tatlı badem yağının performans, karkas parametreleri, kan değerleri ve et kalitesi üzerine etkisi.

Erinç GÜMÜŞ

Koyunlardan İzole Edilen Shiga Toksin Üreten Escherichia coli Suşlarının Virülens Faktörlerinin Araştırılması

Nuray ŞAHİN, Murat YILDIRIM, Sibel KIZIL

TAGEM tarafından desteklenen araştırma projelerinden üretilen makalelerin bilim dallarına göre bibliyometrik analizi

Erkan TAÇBAŞ, Şahin ÇAKIR, Solmaz ÖZKAN, Derya DEMİR

PPR (koyun keçi vebası) ve mavidil aşısının merinos ırkı koyunlarda eş zamanlı uygulanabilirliğinin araştırılması

Züleyha ERGÜN

Theranekron®'un sağlıklı ve iskemi-reperfüzyon hasarı oluşturulan rat ovaryumunda etkisi

Fatma GÜLER, Tolunay KOZLU, Yaşar ERGÜN, Beyza SUVARIKLI ALAN, Tolga TUTAR

Sığırların Nodüler Ekzantemi hastalığında vektör kene ile konak arasındaki ilişkinin moleküler araştırılması

Hamza KADI, Cüneyt TAMER, Emre OZAN, Mitat KURT, Selma KAYA, Abdullah CAVUNT, Harun ALBAYRAK