Süt İşlemede Ultrason Kullanımı

Ultrasonik işleme, gıda sanayisindeki yeni teknolojilerden biridir. Ultrason terimi işitilebilir frekans aralığının ötesindeki ses dalgalarını ifade etmektedir. Ultrason sıvı bir ortamdan geçtiğinde, akustik kavitasyon olarak bilinen bir olay meydana gelmektedir. Akustik kavitasyon, yüksek düzeyde reaktif radikaller, mikrojetler, kayma kuvvetleri, şok dalgaları ve türbülans gibi şiddetli fiziksel kuvvetler oluşturmaktadır. Ultrasonun bu etkileri süt işlemede membran temizleme, emülsiyon oluşumu, homojenizasyon, süt yağının ayrılması, süt yağının ve laktozun kristalizasyonu, gaz giderme, mikrobiyal ve enzimatik aktivasyon/inaktivasyon, ultrasonik görüntüleme, proses kontrolü, ultrasonik atomizasyon ve fonksiyonel özelliklerin değiştirilmesi gibi işlemlerde kullanılmaktadır. Bu derleme çalışmasında, ultrason ve akustik kavitasyon kavramlarının yanı sıra ultrason teknolojisinin süt ve süt ürünlerinde kullanımı ile ilgili bilgiler sunulmaktadır.

Use of Ultrasound in Dairy Processing

Ultrasonic processing is one of the novel technologies in food industry. The term ultrasound refers to sound waves beyond the audible frequency range. When ultrasound passes through a liquid medium, a phenomenon known as acoustic cavitation occurs. Acoustic cavitation generates highly reactive radicals and intense physical forces such as microjets, shear forces, shock waves and turbulence. These effects of ultrasound are used in dairy processing for membrane cleaning, emulsion formation, homogenization, separation of milkfat, crystallization of milkfat and lactose, degassing, microbial and enzymatic activation/inactivation, ultrasonic imaging, process control, ultrasonic atomization, and alteration of functional properties. In this review, information about the concepts of ultrasound and acoustic cavitation along with the use of ultrasound technology in milk and dairy products is presented.

___

  • [1] Alzamora, S.M., Guerro, S.N., Lopez-Malo, A. (2000). Ultrasound as a Food Preservation Method. IFT Annual Meeting, USA.
  • [2] Manas, P., Pagan, R., Raso, J., Sala, J.F., Condon, S.J. (2000). Inactivation of Salmonella enteriditis, Salmonella typhimurium and Salmonella senftenberg by ultrasonic waves under pressure. Journal of Food Protection, 63, 451-456.
  • [3] Firouz, M.S., Farahmandi, A., Hosseinpour, S. (2019). Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrasonics Sonochemistry, 57, 73-88.
  • [4] Anonim.(2022). HART Design&Manufacturing Inc., https://hartdesign.com/products/cutting/ultrasonic-bar-cutting/, Erişim tarihi [27.10.2022].
  • [5] Gallo, M., Ferrara, L., Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods, 7, 164.
  • [6] Ashokkumar, M., Bhaskaracharya, R., Kentish, S., Lee, J., Palmer, M., Zisu, B. (2010). The ultrasonic processing of dairy products-An overview. Dairy Science and Technology, 90, 147-168.
  • [7] Yu, Z., Su, Y., Zhang, Y., Zhu, P., Mei, Z., Zhou, X., Yu, H. (2021). Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: A review. Food Chemistry, 357, 129805.
  • [8] Bhat, Z.F., Morton, J.D., Bekhit, A.E.D.A., Kumar, S., Bhat, H.F. (2021). Effect of processing technologies on the digestibility of egg proteins. Comprehensive Reviews in Food Science and Food Safety, 20, 4703-4738.
  • [9] Chandrapala, J., Oliver, C., Kentish, S., Ashokkumar, M. (2012). Ultrasonics in food processing. Ultrasonics Sonochemistry, 19, 975-983.
  • [10] Abesinghe, A.M.N.L., Islam, N., Vidanarachchi, J.K., Prakash, S., Silva, K.F.S.T., Karim, M.A. (2019). Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria. International Dairy Journal, 90, 1-14.
  • [11] Akdeniz, V., Akalın, A.S. (2019). New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends in Food Science & Technology, 86, 392-398.
  • [12] Patist, A., Bates, D. (2008). Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science and Emerging Technologies, 9, 147-154.
  • [13] Guimarães, J.T., Silva, E.K., Alvarenga, V.O., Costa, A.L.R., Cunha, R.L., Sant’Ana, A.S., Freitas, M.Q., Meireles, M.A.A., Cruz, A.G. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44, 251-260.
  • [14] Carrillo-Lopez, L.M., Garcia-Galicia, I.A., Tirado-Gallegos, J.M., Sanchez-Vega, R., Huerta-Jimenez, M., Ashokkumar, M., Alarcon-Rojo, A.D. (2021). Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. Ultrasonics Sonochemistry, 73, 105467.
  • [15] Alventosa-deLara, E., Barredo-Damas, S., Alcaina-Miranda, M.I., Iborra-Clar, M.I. (2014). Study and optimization of the ultrasound-enhanced cleaning of an ultrafiltration ceramic membrane through a combined experimental–statistical approach. Ultrasonics Sonochemistry, 21, 1222-1234.
  • [16] Muthukumaran, S., Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G.W., Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39, 99-107.
  • [17] Kan, C-C., Genuino, D.A.D., Rivera, K.K.P., De Luna, M.D.G. (2016). Ultrasonic cleaning of polytetrafluoroethylene membrane fouled by natural organic matter. Journal of Membrane Science, 497, 450-457.
  • [18] Luján-Facundo, M.J., Mendoza-Roca, J.A., Cuartas-Uribe, B., Álvarez-Blanco, S. (2016). Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries. Ultrasonics Sonochemistry, 33, 18-25.
  • [19] Maskooki, A., Kobayashi, T., Mortazavi, S.A., Maskooki, A. (2008). Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Separation and Purification Technology, 59, 67-73.
  • [20] Windhab, E.J., Dressler, M., Feigl, K., Fischer, P., Megias-Alguacil, D. (2005). Emulsion processing from single-drop deformation to design of complex processes and products. Chemical Engineering Science, 60, 2101–2113.
  • [21] Akdeniz, V., Akalın, A.S. (2020). The effect of high power ultrasound on the milk homogenization efficiency and milk fat globule size compared to conventional homogenization. Turkish Journal of Agriculture - Food Science and Technology, 8(1), 252-259.
  • [22] Akdeniz, V., Akalın, A.S. (2022). Power ultrasound affect on physicochemical, rheological and sensory characteristics of probiotic yoghurts. International Dairy Journal, 105530.
  • [23] Paniwnyk, L. (2017). Applications of ultrasound in processing of liquid foods: A review. Ultrasonics Sonochemistry, 38, 794-806.
  • [24] Gregersen, S.B., Frydenberg, R.P., Hammershøj, M., Dalsgaard, T.K., Andersen, U., Wiking, L. (2019). Application of high intensity ultrasound to accelerate crystallization of anhydrous milk fat and rapeseed oil blends. European Journal of Lipid Science and Technology, 121, 1800200.
  • [25] Martini, S., Suzuki, A.H., Hartel, R.W. (2008). Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. Journal of the American Oil Chemists' Society, 85, 621-628.
  • [26] Batghare, A.H., Roy, K., Moholkar, V.S. (2020). Investigations in physical mechanism of ultrasound-assisted antisolvent batch crystallization of lactose monohydrate from aqueous solutions. Ultrasonics Sonochemistry, 67, 105127.
  • [27] Sánchez-García, Y.I., García-Vega, K.S., Leal-Ramos, M.Y., Salmeron, I., Gutiérrez-Méndez, N. (2018). Ultrasound-assisted crystallization of lactose in the presence of whey proteins and κ-carrageenan. Ultrasonics Sonochemistry, 42, 714-722.
  • [28] Villamiel M., Verdurmen R., de Jong P. (2000). Degassing of milk by high-intensity ultrasound. Milchwissenschaft, 55, 123-125.
  • [29] Riera, E., Gallego-Juarez, J.A., Mason, T.J. (2006). Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams. Ultrasonics Sonochemistry, 13, 107-116.
  • [30] Bevilacqua, A., Campaniello, D., Speranza, B., Altieri, C., Sinigaglia, M., Corbo, M.R. (2019). Two nonthermal technologies for food safety and quality-Ultrasound and high pressure homogenization: Effects on microorganisms, advances, and possibilities: A review. Journal of Food Protection, 82(12), 2049–2064.
  • [31] Akdeniz, V., Akalın, A.S. (2022). Recent advances in dual effect of power ultrasound to microorganisms in dairy industry: activation or inactivation. Critical Reviews in Food Science and Nutrition, 62(4), 889-904.
  • [32] Lopez-Gomez, A., Fernandez, P.S., Palop, A., Periago, P.M., Martinez-Lopez, A., Marin-Iniesta, F., Barbosa-Canovas, G.V. (2009). Food safety engineering: An emergent perspective. Food Engineering Reviews, 1, 84-104.
  • [33] Villamiel, M., de Jong, P. (2000). Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase soy broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating. Journal of Food Engineering, 45, 171-179.
  • [34] Knorr, D., Zenker, M., Heinz, V., Lee, D-U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15, 261-266.
  • [35] Czank, C., Simmer, K., Hartmann, P. E. (2010). Simultaneous pasteurization and homogenization of human milk by combining heat and ultrasound: effect on milk quality. Journal of Dairy Research, 77, 183-189.
  • [36] Lee, H., Zhou, B., Liang, W., Feng, H., Martin, S.E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. Journal of Food Engineering, 93, 354-364.
  • [37] Chandrapala, J., Oliver, C., Kentish, S., Ashokkumar, M. (2012). Ultrasonics in food processing-Food quality assurance and food safety. Trends in Food Science and Technology, 26, 88-98.
  • [38] Riener, J., Noci, F., Cronin, D.A., Morgan, D.J., Lyng, J.G. (2009). Characterisation of volatile compounds generated in milk by high intensity ultrasound. International Dairy Journal, 19, 269-272.
  • [39] Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., Xiong, F., He, R., Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144-149.
  • [40] Corredig, M., Alexander, M., Dalgleish, D.G. (2004). The application of ultrasonic spectroscopy to the study of the gelation of milk components. Food Research International, 37, 557-565.
  • [41] Wang, Q., Bulca, S., Kulozik, U. (2007). A comparison of low-intensity ultrasound and oscillating rheology to assess the renneting properties of casein solutions after UHT heat pre-treatment. International Dairy Journal, 17, 50-58.
  • [42] Ertugay, M.F., Şengül, M., Şengül, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkish Journal of Veterinary and Animal Sciences, 28, 303-308.
  • [43] O'Sullivan, J.J., Norwood, E-A, O’Mahony, J.A., Kelly, A.L. (2019). Atomisation technologies used in spray drying in the dairy industry: A review. Journal of Food Engineering, 243, 57-69.
  • [44] Ashokkumar, M., Lee, J., Zisu, B., Bhaskarcharya, R., Palmer, M., Kentish, S. (2009). Sonication increases the heat stability of whey proteins. Journal of Dairy Science, 92, 5353-5356.
  • [45] Deshpande, V.K., Walsh, M.K. (2018). Effect of sonication on the viscosity of reconstituted skim milk powder and milk protein concentrate as influenced by solids concentration, temperature and sonication. International Dairy Journal, 78, 122-129.
  • [46] Zisu, B., Schleyer, M., Chandrapala, J. (2013). Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. International Dairy Journal, 31(1), 41-43.
  • [47] Yanjun, S., Jianhang, C., Shuwen, Z., Hongjuan, L., Jing, L., Lu, L., Uluko, H., Yanling, S., Wenming, C., Wupen, G., Jiaping, L. (2014). Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. Journal of Food Engineering, 124, 11-18.
  • [48] Zhao, X., Fan, X., Shao, X., Cheng, M., Wang, C., Jiang, H., Zhang, X., Yuan, C. (2022). Modifying the physicochemical properties, solubility and foaming capacity of milk proteins by ultrasound-assisted alkaline pH-shifting treatment. Ultrasonics Sonochemistry, 88, 106089.
  • [49] Jiang, Z., Wang, C., Li, T., Sun, D., Gao, H., Gao, Z., Mu, Z. (2019). Effect of ultrasound on the structure and functional properties of transglutaminase-crosslinked whey protein isolate exposed to prior heat treatment. International Dairy Journal, 88, 79-88.
  • [50] Zhao, L., Zhang, S., Uluko, H., Liu, L., Lu, J., Xue, H., Kong, F., Lv, J. (2014). Effect of ultrasound pretreatment on rennet-induced coagulation properties of goat’s milk. Food Chemistry, 165, 167-174.
  • [51] Liu, Z., Juliano, P., Williams, R.P.W., Niere, J., Augustin, M.A. (2014). Ultrasound improves the renneting properties of milk. Ultrasonics Sonochemistry, 21, 2131-2137.
  • [52] Riener, J., Noci, F., Cronin, D.A., Morgan, D.J., Lyng, J.G. (2010). A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chemistry, 119(3), 1108-1113.
  • [53] Vercet, A., Oria, R., Marquina, P., Crelier, S., Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50(21), 6165-6171.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi
Sayıdaki Diğer Makaleler

Atık Çay Ekstraktında Üretilen Aspergillus niger Misellerinden Elde Edilen Kitosanın Özellikleri

Rukiye AVCI, Arzu ÇAĞRI MEHMETOĞLU

Elektronik Burun Metal Oksit Yarı İletken Sensörlerin Gıda Analizlerinde Kullanımı

Yasemin İNCEGÜL, Gülcan ÖZKAN, Ali Can İNCEGÜL, Kubilay TAŞDELEN

Kırgız Cumhuriyeti Issyk-Kul Bölgesinde Yetişen Yalanci İğde (Hippophae rhamnoides L.) Meyvelerinin Kimyasal Kompozisyonu ve Antioksidan Aktivitesi

Aigul USUBALİEVA, Vildan EYİZ, Nurzat TOTUBAEVA, İsmail TONTUL

Toprak Kökenli Miksobakteri İzolatlarından Alfa-Amilaz Enzimi Üretimi ve Saflaştırılması

Melike BARAN EKİNCİ, Aynur Gül KARAHAN ÇAKMAKÇI

Yüksek Yoğunluklu Ultrason ve Yüksek Basınçlı Homojenizasyona Maruz Bırakılan Bezelye Proteini Nanoemülsiyonlarının Depolanması Sırasında Emülsifiye Edici Özellik, Parçacık Boyutu, Bulanıklık ve Lipid Oksidasyonundaki Değişimler

Gülçin YILDIZ

Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması

Yunus Emre KISAÇ, Mustafa Kemal USLU

Depolanma Sırasında Sıcaklık ve Paketleme Yönteminin Dondurarak Kurutulmuş Kırmızı Pancar Tozunun Biyoaktif Bileşenleri Üzerine Etkisi

Özgür AKTOK, Engin DEMİRAY

Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri

Duygu ZEHİR ŞENTÜRK, Tülin UÇAR, Ömer ŞİMŞEK

Geleneksel Yöntem ile Üretilen Adıyaman Peynirinin Bazı Fizikokimyasal, Tekstürel ve Mikrobiyolojik Özellikleri

Özge GÖKÇE, Damla BAYANA, Ahmet KÜÇÜKÇETİN, Oğuz GÜRSOY

Batı Akdeniz Bölgesi’nde Doğal Olarak Yetişen İğde (Elaeagnus angustifolia L.) Çeşitlerinin Antioksidan Aktivitesi, Fiziko-Kimyasal Özellikleri ve Yağ Asidi Kompozisyonu

Rabia FAKI, Hale SEÇİLMİŞ CANBAY, Oğuz GÜRSOY, Yusuf YILMAZ