Mikoproteinler: Geleneksel Et ve Et Ürünlerine Bir Alternatif

Dünya nüfusunda meydana gelen hızlı artış, mevcut gıda ihtiyacının günden güne artmasına neden olmaktadır. Hayvansal kaynaklı protein üretiminin zaman, enerji, maliyet ve çevre gibi faktörler üzerine olumsuz etkileri bulunabilmektedir. Dolayısıyla hızla artan küresel nüfusa yeterli gıda kaynağının sağlanması ve hayvansal bazlı protein üretimi süresince meydana gelebilecek söz konusu olumsuzlukların azaltılması gibi gereklilikler, geleneksel et ve et ürünleri gibi alışılagelmiş protein kaynaklarının alternatif içeriklerle değiştirilmesi yaklaşımını ortaya çıkarmıştır. Mikoproteinler tek hücre proteini olarak da bilinen mikrobiyal protein grubunda yer almakta; kısmen veya tamamen hayvansal bazlı proteinlerin yerini alabilmektedir. Aynı zamanda bunların üretiminde tarımsal endüstriyel atık maddelerinin substrat olarak kullanılabilmesi çevresel açıdan çok yönlü bir katkı sağlamaktadır. Mikoproteinler elzem amino asitler, karbonhidratlar ve vitaminler açısından zengin bir içeriğe sahiptir. Ayrıca toplam üretim maliyetinin düşük olması, sel ve kuraklık gibi iklimsel koşullardan ve alan sınırlamalarından bağımsız olarak üretilebilmesi gibi avantajları ile ön plana çıkmaktadır. Bu derlemede, mikoprotein üretimi için gerekli fermantasyon koşulları ve kullanılan substratlar, mikoproteinlerin besin değeri, mikoprotein ürünlerinin duyusal özellikleri ve tüketicilerce kabulü, mikoproteinlerin et ikamesi olarak formülasyonlarda kullanımı ve çevre, sağlık ve güvenlik faktörleri üzerine etkisi hakkında bilgi verilmiştir.

Mycoproteins: An Alternative to Conventional Meat and Meat Products

The rapid increase in the world population has caused the current food demand to increase day by day. The production of animal-based proteins may have adverse effects on factors such as time, energy, cost and environment. Therefore, requirements such as providing sufficient food supply to the rapidly growing global population and reducing these undesired effects that may occur during the production of animal-based proteins have created an approach to replace conventional protein sources like traditional meat and meat products with alternative ingredients. Mycoproteins are in the group of microbial proteins, also known as single cell proteins and can partially or completely replace animal-based proteins. Also, the use of agricultural and industrial waste materials as a substrate in the production of mycoproteins provides a versatile contribution to the cleaner environment. They are rich in essential amino acids, carbohydrates and vitamins and have positive and effective properties like low total production costs and producibility that is independent from climatic challenges such as flood, drought and area limitations. In this review, information on fermentation conditions and substrates used for mycoprotein production, nutritional value of mycoproteins, sensory properties and consumer acceptance of mycoprotein products, the use of mycoproteins in formulations like meat substitutes, and the effect of mycoproteins on environmental, health and safety factors are presented.

___

  • [1] Gabriel, A., Victor, N., du Preez James, C. (2014). Cactus pear biomass, a potential lignocellulose raw material for single cell protein production (SCP): a review. International Journal of Current Microbiology and Applied Science, 3(7), 171-197.
  • [2] United Nations Department of Economics and Social Affairs (2015). World population projected to reach 9.7 billion by 2050 https://www.un.org/en/development/desa/news/population/2015-report.html (Erişim tarihi:24.05.2021).
  • [3] McKenzie, F.C., Williams, J. (2015). Sustainable food production: constraints, challenges and choices by 2050. Food Security, 7(2), 221-233.
  • [4] Grafton, R.Q., Daugbjerg, C., Qureshi, M.E. (2015). Towards food security by 2050. Food Security, 7(2), 179-183.
  • [5] Upadhyaya, S., Tiwari, K., Arora, N., Singh, D.P. (2016). Microbial protein: a valuable component for future food security. In Microbes and Environmental Management. Edited by J.S. Singh and D.P. Singh, Studium Press, New Delhi, 259-279.
  • [6] Navarro, J.C.A., Prado, S.M.C., Cardenas, P.A., Santos, R.D., Caramelli, B. (2010). Pre-historic eating patterns in Latin America and protective effects of plant-based diets on cardiovascular risk factors. Clinics, 65(10), 1049-1054.
  • [7] Schneider, U. A., Havlík, P., Schmid, E., Valin, H., Mosnier, A., Obersteiner, M., Böttcher H., Skalsky, R., Balkovid, J., Sauer, T., Fritz, S. (2011). Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems, 104(2), 204-215.
  • [8] Afshin, A., Sur, P. J., Fay, K. A., Cornaby, L., Ferrara, G., Salama, J. S., Murray, C. J. (2019). Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 393(10184), 1958-1972.
  • [9] Stehfest, E., Bouwman, L., Van Vuuren, D.P., Den Elzen, M.G., Eickhout, B., Kabat, P. (2009). Climate benefits of changing diet. Climatic Change, 95(1), 83-102.
  • [10] Bonny, S.P., Gardner, G.E., Pethick, D.W., Hocquette, J.F. (2015). What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture, 14(2), 255-263.
  • [11] Santesso, N., Akl, E.A., Bianchi, M., Mente, A., Mustafa, R., Heels-Ansdell, D., Schünemann, H.J. (2012). Effects of higher-versus lower-protein diets on health outcomes: a systematic review and meta-analysis. European Journal of Clinical Nutrition, 66(7), 780-788.
  • [12] National Heart Foundation. 2019. Dietary Position Statement-Meat & Heart Healthy Eating; National Heart Foundation. Melbourne, Victoria, Australia.
  • [13] Peters, G.M., Rowley, H.V., Wiedemann, S., Tucker, R., Short, M.D., Schulz, M. (2010). Red meat production in Australia: life cycle assessment and comparison with overseas studies. Environmental Science and Technology, 44(4), 1327-1332.
  • [14] Kalhor, T., Rajabipour, A., Akram, A., Sharifi, M. (2016). Environmental impact assessment of chicken meat production using life cycle assessment. Information Processing in Agriculture, 3(4), 262-271.
  • [15] Gruener, O. (2010). The water footprint: water in the supply chain. The environmentalist, 1(93), 12.
  • [16] Pimentel, D., Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. The American Journal of Clinical Nutrition, 78(3), 660-663.
  • [17] Tuomisto, H.L. (2019). The eco-friendly burger: could cultured meat improve the environmental sustainability of meat products? EMBO Reports, 20(1), e47395.
  • [18] Poore, J., Nemecek, T. (2018). Reducing food's enviromental impacts through producers and consumers. Science, 360(6392), 987-992.
  • [19] Meticulous Market Research. ‘‘Alternative Protein Market to Reach $27.05 Billion by 2027- Market Size, Share, Forecasts, & Trends Analysis Report with COVID-19 Impact by Meticulous Research’’. https://www.globenewswire.com/en/news-release/2021/09/13/2295883/0/en/Alternative-Protein-Market-to-Reach-27-05-Billion-by-2027-Market-Size-Share-Forecasts-Trends-Analysis-Report-with-COVID-19-Impact-by-Meticulous-Research.html Son erişim tarihi: 12 Nisan 2022
  • [20] Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods, 6(7), 53.
  • [21] Israelidis, C.J. (1988). Nutrition-Single cell protein, twenty years later. First Biointernational Conference Biopolitcs International Organisation, May 6-10 1987, Athens, Greece.
  • [22] Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818.
  • [23] Wu, G., Fanzo, J., Miller, D.D., Pingali, P., Post, M., Steiner, J.L., Thalacker-Mercer, A.E. (2014). Production and supply of high‐quality food protein for human consumption: sustainability, challenges, and innovations. Annals of the New York Academy of Sciences, 1321(1), 1-19.
  • [24] Michaelsen, K.F., Neufeld, L.M., Prentice, A.M. (2020). Global Landscape of Nutrition Challenges in Infants and Children. Karger Medical and Scientific Publishers, Basel, Switzerland.
  • [25] [25] Wu, G., Jaeger, L.A., Bazer, F.W., Rhoads, J.M. (2004). Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. The Journal of Nutritional Biochemistry, 15(8), 442-451.
  • [26] Taylor, L. H., Latham, S. M., Woolhouse, M. E. (2001). Risk factors for human disease emergence, Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 356(1411), 983-989.
  • [27] Woolhouse, M., Gaunt, E. (2007). Ecological origins of novel human pathogens. Critical Reviews in Microbiology. 33(4), 231-242.
  • [28] Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990-993.
  • [29] Lau, S.K., Wong, E.Y., Tsang, C.C., Ahmed, S.S., Au-Yeung, R.K., Yuen, K.Y., Wernery, U., Woo, P.C. (2018). Discovery and sequence analysis of four delta coronaviruses from birds in the Middle East reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission. Journal of Virology, 92(15), e00265-18.
  • [30] Sun, H., Xiao, Y., Liu, J., Wang, D., Li, F., Wang, C., Liu, J. (2020). Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proceedings of the National Academy of Sciences, 117(29), 17204-17210.
  • [31] Gong, Y., Ma, T.C., Xu, Y.Y., Yang, R., Gao, L.J., Wu, S.H., Li, J., Yue, M.I., Liang, H., He, X., Yun, T. (2020). Early research on COVID-19: a bibliometric analysis. The Innovation, 1(2), 100027.
  • [32] Edwards, C. E., Yount, B. L., Graham, R. L., Leist, S. R., Hou, Y. J., Dinnon, K. H., Sims, A. C., Swanstrom, J., Gully, K., Scobey, T.D., Cooley, M.R., Currie, C.G., Randell, S.H., Baric, R.S. (2020). Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proceedings of the National Academy of Sciences. 117(43), 26915-26925.
  • [33] Alders, R., Awuni, J.A., Bagnol, B., Farrell, P., de Haan, N. (2014). Impact of avian influenza on village poultry production globally. Ecohealth, 11(1), 63-72.
  • [34] Pitts, N., Whitnall, T. (2019). Impact of African swine fever on global markets. Agricultural Commodities, 9(3), 52-54.
  • [35] Scott, A., Hernandez-Jover, M., Groves, P., Toribio, J.A. (2020). An overview of avian influenza in the context of the Australian commercial poultry industry. One Health, 10, 100139.
  • [36] Sharima-Abdullah, N., Hassan, C.Z., Arifin, N., Huda-Faujan, N. (2018). Physicochemical properties and consumer preference of imitation chicken nuggets produced from chickpea flour and textured vegetable protein. International Food Research Journal, 25(3), 1016-1025.
  • [37] Schreuders, F.K., Dekkers, B.L., Bodnár, I., Erni, P., Boom, R.M., van der Goot, A.J. (2019). Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. Journal of Food Engineering, 261, 32-39.
  • [38] Chiang, J.H., Loveday, S.M., Hardacre, A.K., Parker, M.E. (2019). Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Structure, 19, 100-102.
  • [39] Kim, T., Riaz, M.N., Awika, J., Teferra, T.F. (2021). The effect of cooling and rehydration methods in high moisture meat analogs with pulse proteins-peas, lentils, and faba beans. Journal of Food Science, 86(4), 1322-1334.
  • [40] Dick, A., Bhandari, B., Prakash, S. (2019). 3D printing of meat. Meat science, 153, 35-44.
  • [41] Bryant, C.J. (2020). Culture, meat, and cultured meat. Journal of Animal Science, 98(8), 172-179.
  • [42] Fraeye, I., Kratka, M., Vandenburgh, H., Thorrez, L. (2020). Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: much to be inferred. Frontiers in Nutrition, 7, 35.
  • [43] Değerli, C. (2020). Processed Meat Production in 3 Dimensional (3D) Printing Technology. Turkish Journal of Agriculture-Food Science and Technology, 8(5), 1018-1026.
  • [44] Trinci, A.P.J. (1991). Quorn mycoprotein. Mycologist, 5(3), 106-109.
  • [45] Kim, K., Choi, B., Lee, I., Lee, H., Kwon, S., Oh, K., Kim, A.Y. (2011). Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue. Journal of the Science of Food and Agriculture, 91(9), 1561-1568.
  • [46] Stoffel, F., de Oliveira Santana, W., Gregolon, J.G.N., Kist, T.B.L., Fontana, R.C., Camassola, M. (2019). Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. Innovative Food Science and Emerging Technologies, 58, 102227.
  • [47] Hellwig, C., Gmoser, R., Lundin, M., Taherzadeh, M. J., Rousta, K. (2020). Fungi Burger from Stale Bread? A Case Study on Perceptions of a Novel Protein-Rich Food Product Made from an Edible Fungus. Foods, 9(8), 1112.
  • [48] Stoffel, F., de Oliveira Santana, W., Fontana, R.C., Camassola, M. (2021). Use of Pleurotus albidus mycoprotein flour to produce cookies: Evaluation of nutritional enrichment and biological activity. Innovative Food Science and Emerging Technologies, 68, 102642.
  • [49] FDA, (2002). Generally Recognized as Safe (GRAS) Notification Fermented Microbial Protein, https://www.fda.gov/media/142277/download (Erişim Tarihi:24.05.2021).
  • [50] Wiebe, M.G. (2004). QuornTM Myco-protein-Overview of a successful fungal product. Mycologist, 18(1), 17-20.
  • [51] Edelman, J., Fewell, A., Solomons, G.L. (1983). Myco-protein-a new food. Nutrition Abstract and Reviews in Clinical Nutrition, 53, 471-480.
  • [52] Edwards, D.G. (1993). The nutritional evaluation of myco-protein. International Journal of Food Sciences and Nutrition, 44, 37-43.
  • [53] Sadler, M. (1990). Myco-protein-a new food. Nutrition Bullettin, 15(3), 180-190.
  • [54] Wheelock, V. (1993). Quorn: case study of a healthy food ingredient. British Food Journal, 95(5), 40-44.
  • [55] Denny, A., Aisbitt, B., Lunn, J. (2008). Mycoprotein and health. Nutrition bulletin, 33(4), 298-310.
  • [56] Bottin, J.H., Swann, J.R., Cropp, E., Chambers, E.S., Ford, H.E., Ghatei, M.A., Frost, G.S. (2016). Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial. British Journal of Nutrition, 116(2), 360-374.
  • [57] Harris, H.C., Edwards, C.A., Morrison, D.J. (2019). Short chain fatty acid production from mycoprotein and mycoprotein fibre in an in vitro fermentation model. Nutrients, 11(4), 800.
  • [58] Finnigan, T., Needham, L., Abbott, C. (2017). Mycoprotein: a healthy new protein with a low environmental impact. In Sustainable Protein Sources, Edited by S.R. Nadathur, J.P.D. Wanasundara, L. Scanlin, Academic Press, London, United Kingdom, 305-325.
  • [59] Chandrani-Wijeyaratne, S., Tayathilake, A.N. (2000). Characteristics of two yeast strain (Candida tropicalis) isolated from Caryota urens (Khitul) toddy for single cell protein production. Journal of the National Science Foundation of Sri Lanka, 28, 79-86.
  • [60] Suman, G., Nupur, M., Anuradha, S., Pradeep, B. (2015). Single cell protein production: a review. International Journal of Current Microbiology and Applied Science, 4(9), 251-262.
  • [61] Hosseini, S.M., Khosravi-Darani, K., Mohammadifar, M.A., Nikoopour, H. (2009). Production of mycoprotein by Fusarium venenatum growth on modified Vogel medium. Asian Journal of Chemistry, 21(5), 4017-4022.
  • [62] Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, I.M., Koutinas, A.A. (2014). Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 145, 710-716.
  • [63] Liu, B., Li, Y., Song, J., Zhang, L., Dong, J., Yang, Q. (2014). Production of single-cell protein with two-step fermentation for treatment of potato starch processing waste. Cellulose, 21(5), 3637-3645.
  • [64] Rodger, G. (2001). Mycoprotein-a meat alternative new to the US Production and properties of mycoprotein as a meat alternative. Food Technology, 55(7), 36-41.
  • [65] Trinci, A.P. (1992). Myco-protein: A twenty-year overnight success story. Mycological Research, 96(1), 1-13.
  • [66] Sinskey, A.J., Tannenbaum, S.R. (1975). Removal of nucleic acids in SCP. In Single Cell Protein II Edited by S. Tannenbaum, D.I.C Wang, MIT Press, Cambridge, 158
  • [67] Anderson, C., Solomons, G.L. (1982). Primary metabolism and biomass production from Fusarium. Symposia of British Mycological Society, 7, 231-250.
  • [68] Wiebe, M. (2002). Myco-protein from Fusarium venenatum: a well-established product for human consumption. Applied Microbiology and Biotechnology, 58(4), 421-427.
  • [69] Rudravaram, R., Chandel, A.K., Rao, L.V., Hui, Y.Z., Ravindra, P. (2009). Bio (Single Cell) protein: issues of production, toxins and commercialisation status. In Agricultural wastes, Edited by G.S. Ashworth and P. Azevedo, Nova Science Publishers, New York, 129-153.
  • [70] Nasseri, A.T., Rasoul-Amini, S., Morowvat, M.H., Ghasemi, Y. (2011). Single cell protein: production and process. American Journal of Food Technology, 6(2), 103-116.
  • [71] Ravindra, P. (2000). Value-added food: Single cell protein. Biotechnology Advances, 18(6), 459-479.
  • [72] Ukaegbu-Obi, K.M. (2016). Single cell protein: a resort to global protein challenge and waste management. Journal of Microbiology and Microbial Technology, 1(1), 5.
  • [73] Souza Filho, P.F., Nair, R.B., Andersson, D., Lennartsson, P.R., Taherzadeh, M.J. (2018). Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biology and Biotechnology, 5(1), 1-10.
  • [74] Bekatorou, A., Psarianos, C., Koutinas, A.A. (2006). Production of food grade yeasts. Food Technology and Biotechnology, 44(3), 407-415.
  • [75] Reihani, S.F.S., Khosravi-Darani, K. (2018). Mycoprotein production from date waste using Fusarium venenatum in a submerged culture. Applied Food Biotechnology, 5(4), 243-352.
  • [76] Hashempour‐Baltork, F., Hosseini, S.M., Assarehzadegan, M.A., Khosravi‐Darani, K., Hosseini, H. (2020). Safety assays and nutritional values of mycoprotein produced by Fusarium venenatum IR372C from date waste as substrate. Journal of the Science of Food and Agriculture, 100(12), 4433-4441.
  • [77] Ugalde, U.O., Castrillo, J.I. (2002). Single cell proteins from fungi and yeasts. In Applied Mycology and Biotechnology Volume 2, Edited by G.G. Khachatourians and D.K. Arora, Elsevier Science, Amsterdam, 123-149.
  • [78] Miller, S.A., Dwyer, J.T. (2001). Evaluating the safety and nutritional value of mycoprotein. Food Technology (Chicago), 55(7), 42-47.
  • [79] Udall, J.N., Lo, C.W., Young, V.R., Scrimshaw, N.S. (1984). The tolerance and nutritional value of two microfungal foods in human subjects. The American Journal of Clinical Nutrition, 40(2), 285-292.
  • [80] Ahmad, M. I., Farooq, S., Alhamoud, Y., Li, C., Zhang, H. (2022). A review on mycoprotein: History, nutritional composition, production methods, and health benefits. Trends in Food Science & Technology, 121, 14-29
  • [81] Matassa, S., Boon, N., Pikaar, I., Verstraete, W. (2016). Microbial protein: future sustainable food supply route with low environmental footprint. Microbial Biotechnology, 9(5), 568-575.
  • [82] Finnigan, T.J.A. (2011). Mycoprotein: origins, production and properties. In Handbook of Food Proteins, Edited by G.O. Phillips and P.A. Williams, Woodhead Publishing Limited, New Delhi, 335-352.
  • [83] Benjamin Ferrer. (2022). Alt-meat for astronauts: Eternal explores fungal-based space food from new facility at NASA Kennedy Space Centerhttps://www.foodingredientsfirst.com/news/alt-meat-for-astronauts-eternal-to-explore-space-applications-from-its-new-rd-facility-at-nasa-kennedy-space-center.html (Erişim tarihi:24.04.2022).
  • [84] Eternal. (2022). https://www.eternal.bio/ (Erişim tarihi:24.04.2022).
  • [85] Mycorena. (2022). https://mycorena.com/ (Erişim tarihi:24.04.2022).
  • [86] Enough Food. (2022). https://www.enough-food.com/ (Erişim tarihi:24.04.2022).
  • [87] Elzerman, J.E., Hoek, A.C., Van Boekel, M.A., Luning, P.A. (2011). Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Quality and Preference, 22(3), 233-240.
  • [88] Apostolidis, C., McLeay, F. (2016). It's not vegetarian, it's meat-free! Meat eaters, meat reducers and vegetarians and the case of Quorn in the UK. Social Business, 6(3), 267-290.
  • [89] FAO, 2009. How to Feed the World in 2050. High-Level Expert Forum, June, 2009 Rome, Italy.
  • [90] Hashempour-Baltork, F., Hosseini, H., Shojaee-Aliabadi, S., Torbati, M., Alizadeh, A.M., Alizadeh, M. (2019). Drug resistance and the prevention strategies in food borne bacteria: an update review. Advanced Pharmaceutical Bulletin, 9(3), 335-347.
  • [91] Lymbery, P. (2014). Farmageddon: the True Cost of Cheap Meat. Bloomsbury Publishing, London, England.
  • [92] Tilman, D., Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518-522.
  • [93] Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
  • [94] Hsu, K., Kazer, J., Cumberlege, T. (2018). Quorn Footprint Comparison Report. Carbon Trust, Carbon Trust Advisory Limited, London, England.
  • [95] Rubio, N.R., Xiang, N., Kaplan, D.L. (2020). Plant-based and cell-based approaches to meat production. Nature Communications, 11(1), 1-11.
  • [96] Van Grinsven, H.J., Holland, M., Jacobsen, B.H., Klimont, Z., Sutton, M.A., Jaap Willems, W. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental Science and Technology, 47(8), 3571-3579.
  • [97] Turnbull, W.H., Walton, J., Leeds, A.R. (1993). Acute effects of mycoprotein on subsequent energy intake and appetite variables. The American Journal of Clinical Nutrition, 58(4), 507-512.
  • [98] Burley, V.J., Paul, A.W., Blundell, J.E. (1993). Influence of a high-fibre food (myco-protein*) on appetite: effects on satiation (within meals) and satiety (following meals). European Journal of Clinical Nutrition, 47, 409-418.
  • [99] Williamson, D.A., Geiselman, P.J., Lovejoy, J., Greenway, F., Volaufova, J., Martin, C.K., Arnett, C. Ortego, L. (2006). Effects of consuming mycoprotein, tofu or chicken upon subsequent eating behaviour, hunger and safety. Appetite, 46(1), 41-48.
  • [100] Edwards, C.A., Johnson, I.T., Read, N.W. (1988). Do viscous polysaccharides slow absorption by inhibiting diffusion or convection? European Journal of Clinical Nutrition, 42(4), 307-312.
  • [101] Leclere, C.J., Champ, M., Boillot, J., Guille, G., Lecannu, G., Molis, C., Bornet, F., Krempf, M., Delort-Laval, J. Galmiche, J.P. (1994). Role of viscous guar gums in lowering the glycemic response after a solid meal. The American Journal of Clinical Nutrition, 59(4), 914-921.
  • [102] Turnbull, W.H., Ward, T. (1995). Mycoprotein reduces glycemia and insulinemia when taken with an oral-glucose-tolerance test. The American Journal of Clinical Nutrition, 61(1), 135-140.
  • [103] Turnbull, W.H., Leeds, A.R., Edwards, G.D. (1990). Effect of mycoprotein on blood lipids. The American Journal of Cinical Nutrition, 52(4), 646-650.
  • [104] Turnbull, W.H., Leeds, A.R., Edwards, D.G. (1992). Mycoprotein reduces blood lipids in free-living subjects. The American Journal of Clinical Nutrition, 55(2), 415-419.
  • [105] Jacobson, M.F., DePorter, J. (2018). Self-reported adverse reactions associated with mycoprotein (quorn-brand) containing foods. Annals of Allergy, Asthma and Immunology, 120(6), 626-630.
  • [106] Finnigan, T.J., Wall, B.T., Wilde, P.J., Stephens, F.B., Taylor, S.L., Freedman, M.R. (2019). Mycoprotein: the future of nutritious nonmeat protein, a symposium review. Current Developments in Nutrition, 3(6), 1-5.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi
Sayıdaki Diğer Makaleler

Toprak Kökenli Miksobakteri İzolatlarından Alfa-Amilaz Enzimi Üretimi ve Saflaştırılması

Melike BARAN EKİNCİ, Aynur Gül KARAHAN ÇAKMAKÇI

Geleneksel Yöntem ile Üretilen Adıyaman Peynirinin Bazı Fizikokimyasal, Tekstürel ve Mikrobiyolojik Özellikleri

Özge GÖKÇE, Damla BAYANA, Ahmet KÜÇÜKÇETİN, Oğuz GÜRSOY

Yüksek Yoğunluklu Ultrason ve Yüksek Basınçlı Homojenizasyona Maruz Bırakılan Bezelye Proteini Nanoemülsiyonlarının Depolanması Sırasında Emülsifiye Edici Özellik, Parçacık Boyutu, Bulanıklık ve Lipid Oksidasyonundaki Değişimler

Gülçin YILDIZ

Çok Duvarlı Karbon Nanotüpler/Politiyofen Kompozit Kullanılarak Hazırlanan Amperometrik Glikoz Biyosensörü

Derya KAHRAMAN, Songül ŞEN GÜRSOY

Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması

Yunus Emre KISAÇ, Mustafa Kemal USLU

Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi

Neşecan DUMAN, Melike BARAN EKİNCİ, Arzu KART

Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler

Nursen EROL, Seda ERSUS

Batı Akdeniz Bölgesi’nde Doğal Olarak Yetişen İğde (Elaeagnus angustifolia L.) Çeşitlerinin Antioksidan Aktivitesi, Fiziko-Kimyasal Özellikleri ve Yağ Asidi Kompozisyonu

Rabia FAKI, Hale SEÇİLMİŞ CANBAY, Oğuz GÜRSOY, Yusuf YILMAZ

Süt İşlemede Ultrason Kullanımı

Cesur MEHENKTAŞ

Depolanma Sırasında Sıcaklık ve Paketleme Yönteminin Dondurarak Kurutulmuş Kırmızı Pancar Tozunun Biyoaktif Bileşenleri Üzerine Etkisi

Özgür AKTOK, Engin DEMİRAY