Kırgız Cumhuriyeti Issyk-Kul Bölgesinde Yetişen Yalanci İğde (Hippophae rhamnoides L.) Meyvelerinin Kimyasal Kompozisyonu ve Antioksidan Aktivitesi

Yalancı iğde meyvesi (Hippophae rhamnoides L.) zengin bir besin ve fitokimyasal kaynağıdır. Bu çalışmada, Kırgız Cumhuriyeti'nin Issyk-Kul bölgesinde yetişen yalancı iğde meyvelerinin ağustos ayından kasım ayına kadar olan olgunlaşma döneminde kimyasal bileşimi ve antioksidan aktivitesi belirlenmiştir. Yalancı iğde meyvelerinin antioksidan aktivitesinin belirlenmesinde üç farklı yöntem [ferrik indirgeyici antioksidan güç (FRAP), DPPH radikal süpürücü aktivite (DPPH) ve kuprik iyon azaltıcı antioksidan kapasite (CUPRAC)] kullanılmıştır. Deniz iğdesi meyvelerinin şeker içeriği 6.57-8.08 g/100g, diyet lifi içeriği 0.39-0.83 g/100g, kül içeriği 0.49-0.99 g/100g, lipid içeriği 6.56-6.98 g/100g ve titre edilebilir asitlik değeri %1.38-1.92 arasında belirlenmiştir. Yalancı iğde meyvelerinin toplam fenolik içeriği ve toplam flavonoidleri sırasıyla 408.52-886.48 mg GAE/kg ve 260.81-345.37 mg CE/kg olarak ölçülmüştür. FRAP, DPPH ve CUPRAC ile belirlenen antioksidan aktivite değerleri sırasıyla 88.51-1041.22 mg TE/kg, 1011.93-2673.22 mg TE/kg ve 755.40-1232.55 mg TE/kg olmuştur. Toplam karotenoid içeriği 16.6-18.8 mg/kg olarak ölçülmüştür. Veriler, deniz iğdesi meyvelerinin rengindeki değişim ile kimyasal bileşimi arasındaki ilişkiyi, olgunlaşma aylarına ve hava koşullarının etkisine göre göstermiştir. Tüm bu sonuçlar deniz iğdesi meyvelerinin insan beslenmesinde faydalı olabileceğini göstermekte ve ayrıca fonksiyonel özellikleri zenginleştirmek amacıyla geniş bir ürün yelpazesinde yüksek kullanım potansiyeli vardır.

Chemical Composition and Antioxidant Activity of Sea-Buckthorn (Hippophae rhamnoides L.) Grown in Issyk-Kul Region, Kyrgyz Republic

The fruit of sea-buckthorn (Hippophae rhamnoides L.) is a rich source of nutrients and phytochemicals. This study determined the chemical composition and antioxidant activity of sea-buckthorn grown in Issyk-Kul region, Kyrgyz Republic, during maturation from August to November. Three different assays [ferric reducing antioxidant power (FRAP), DPPH radical scavenging activity (DPPH), and cupric ion reducing antioxidant capacity (CUPRAC)] were used to determine the antioxidant activity of sea-buckthorn fruits. Sea-buckthorn fruits had a sugar content of 6.57-8.08 g/100g, a dietary fiber content of 0.39-0.83 g/100g, an ash content of 0.49-0.99 g/100g, a lipid content of 6.56-6.98 g/100g and titratable acidity of 1.38-1.92%. The total phenolic content and total flavonoids of sea-buckthorn fruits were 408.52–886.48mg GAE/kg and 260.81-345.37mg CE/kg, respectively. Antioxidant activity values determined by FRAP, DPPH, and CUPRAC were 88.51-1041.22mg TE/kg, 1011.93-2673.22mg TE/kg, and 755.40-1232.55mg TE/kg, respectively. Total carotenoid content was 16.6-18.8 mg/kg. Results showed the relationship between the change in the color of sea-buckthorn berries and the chemical composition by the months of their ripening and the influence of weather conditions. All these results indicated that sea-buckthorn fruits could be beneficial for human nutrition while they might have a great potential to be used in a wide range of products to enrich their functional properties.

___

  • [1] Perk, A.A., Ceylan, F.D., Yanar, O., Boztas, K., Capanoglu, E. (2016). Investigating the antioxidant properties and rutin content of sea buckthorn (Hippophae rhamnoides L.) leaves and branches. African journal of Biotechnology, 15(5), 118-124.
  • [2] Michel, T., Destandau, E., Le Floch, G., Lucchesi, M.E., Elfakir, C. (2012). Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophae rhamnoides L.) leaf, stem, root and seed. Food Chemistry, 131(3), 754-760.
  • [3] Wani, T.A, Wani, S.M., Shah, A.G. and Masoodi, F.A. (2013). Optimizing conditions for antioxidant extraction from sea buckthorn leaf (Hippophae rhamnoides L.) as herbal tea using response surface methodology (RSM). International Food Research Journal, 20(4), 1677-1681. [4] Patel, C.A., Divakar, K., Santani, D., Solanki, H.K., Thakkar, J.H. (2012). Remedial Prospective of Hippophae rhamnoides Linn. (Sea Buckthorn). International Scholarly Research Network, ISRN Pharmacology, 436857.
  • [5] Wani, T.A., Wani, S.M., Ahmad, M., Ahmad, M., Gani A., Masoodi, F.A. (2016). Bioactive profile, health benefits and safety evaluation of sea buckthorn (Hippophae rhamnoides L.): A review. Cogent Food & Agriculture., 2, 1.
  • [6] Cho, C.H., Jang, H., Lee, M., Kang, H., Heo, H.J., Kim, D.O. (2017). Sea buckthorn (Hippophae rhamnoides L.) leaf extracts protect neuronal PC-12 cells from oxidative stress. Journal of Microbiology and Biotechnology, 27(7), 1257-1265.
  • [7] Yang, W., Alanne, A.L., Liu, P., Kallio, H., Yang, B. (2015). Flavonol glycosides in currant leaves and variation with growth season, growth location, and leaf position. Journal of Agricultural and Food Chemistry, 63, 9269-9276.
  • [8] Vagiri, M., Ekholm, A., Öberg, E., Johansson, E., Andersson, S.C., Rumpunen K. (2013). Phenols and ascorbic acid in black currants (Ribes nigrum L.): Variation due to genotype, location, and year. Journal of Agricultural and Food Chemistry., 61, 9298-9306.
  • [9] Teleszko, M., Wojdyło, A., Rudzińska, M., Oszmiański, J., Golis, T. (2015). Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophaë rhamnoides L.) berries. Journal of Agricultural and Food Chemistry, 63, 4120-4129.
  • [10] AOAC, 2000, Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA.
  • [11] Eyiz, V., Tontul, I., Turker, S. (2020). Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. Journal of Food Measurement and Characterization, 14(1), 39-47.
  • [12] Llerena, W., Samaniego, I., Angós, I., Brito, B., Ortiz, B., Carrillo, W. (2019). Biocompounds content prediction in ecuadorian fruits using a mathematical model. Foods, 8, 284.
  • [13] Joint International Organization for Standardization/International Commission on Illumination Standard. (2007). CIE Colorimetry - Part 4: 1976. L*a*b* Colour Space. ISO 11664-4:2008(E)/CIES 014-4/E:2007.
  • [14] Bal, L.M., Meda, V., Naik, S.N., Satya, S. (2011). Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Research International, 44(7), 1718-1727.
  • [15] Hendrix, C.M., Redd, J.B. (1995). Chemistry and technology of citrus juices and by-products. In: Ashurst, P.R. (eds) Production and Packaging of Non-Carbonated Fruit Juices and Fruit Beverages. Springer, Boston, MA.
  • [16] Tang, X., Tigerstedt, P.M.A. (2001). Variation of physical and chemical parameters within an elite sea buckthorn (Hippophae rhamnoides L.) breeding population. Scientia Horiticulturae, 88(3), 203-214.
  • [17] Zakynthinos, G., Varzakas, T., Petsios, D. (2016). Sea buckthorn (Hippophae rhamnoides) lipids and their functionality on health aspects. Current Research in Nutrition and Food Science, 4(3), 182-195.
  • [18] Yang, B., Kallio, H. (2002). Effects of harvesting time on triacylglycerols and glycerophospholipids of sea buckthorn (Hippophae rhamnoides L.) berries of different origins. Journal of Food Composition and Analysis, 15(2), 143-157.
  • [19] Mann, J.I., Cummings, J.H. (2009). Possible implications for health of the different definitions of dietary fibre. Nutrition Metabolism and Cardiovascular Diseases, 19(3), 226-229.
  • [20] Tkacz, K., Wojdyło, A., Turkiewicz, I.P., Bobak, L., Nowicka, P. (2019). Anti-oxidant and anti-enzymatic activities of sea buckthorn (Hippophaë rhamnoides L.) fruits modulated by chemical components. Antioxidant, 8(12), 618.
  • [21] Viškelis, P., lanauskas, J., Segliņa, D., Ruisa, S. (2008). The changes of biochemical content in seabuckthorn (Hippophae Rhamnoides l.) during ripening. Proceedings of international scientific conference “Sustainable Fruit Growing: From Plant To Product” 274 May 28 – 31, Jūrmala – Dobele, Latvia.
  • [22] Criste, V.A., Urcan, A.C., Bunea, A., Furtuna, F.R.P., Olah, N.K., Madden, R.H., Corcionivoschi, N. (2020). Phytochemical composition and biological activity of berries and leaves from four Romanian sea buckthorn (Hippophae Rhamnoides L.). Molecules, 25(5), 1170.
  • [23] Zadernowski, R., Naczk, M., Czaplicki, S. Rubinskiene M., Szałkiewicz M. (2005). Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. Journal of the American Oil Chemists Society, 82, 175-179.
  • [24] Guo, R., Guo, X., Li, T., Fu, X., Liu, R.H. (2017). Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chemistry, 221, 997-1003.
  • [25] Pintea, A., Marpeau, A., Faye, M., Socaciu, C., Gleizes, M. (2001). Polar lipid and fatty acid distribution in carotenolipoprotein complexes extracted from sea buckthorn fruits. Phytochemical Analysis, 12(5), 293-298.
  • [26] Ercisli, S., Orhan, E., Ozdemir, O., Sengul, M. (2007). The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Scientia Horticulturae, 115(1), 27-33.
  • [27] Sytařová, I., Orsavová, J., Snopek, L., Mlček, J., Byczyński, L., Mišurcová L. (2020). Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë hamnoides L.) berries and leaves of diverse ripening times. Food Chemistry, 310, 125784.
  • [28] Saeidi, K., Alirezalu, A., Akbari, Z. (2016). Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran. Natural product research, 30(3), 366-368.
  • [29] Rentsendavaa, C., Székely, D., Furulyás, D., Végvári, Gy., Gonelimali, F., Kumar, P., Stéger-Máté, M. (2021). Stability of carotene and phenols of sea buckthorn (Hippophae rhamnoides L.) juice with pomace during storage. Periodica Polytechnica Chemical Engineering, 65(2), 210-218.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi
Sayıdaki Diğer Makaleler

Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi

Neşecan DUMAN, Melike BARAN EKİNCİ, Arzu KART

Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri

Hatice Merve BAYRAM, Arda ÖZTÜRKCAN

Mikoproteinler: Geleneksel Et ve Et Ürünlerine Bir Alternatif

Orhan KAYA, Ali KOZLU, Öyküm Bahar ESEN

Toprak Kökenli Miksobakteri İzolatlarından Alfa-Amilaz Enzimi Üretimi ve Saflaştırılması

Melike BARAN EKİNCİ, Aynur Gül KARAHAN ÇAKMAKÇI

Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler

Nursen EROL, Seda ERSUS

Kırgız Cumhuriyeti Issyk-Kul Bölgesinde Yetişen Yalanci İğde (Hippophae rhamnoides L.) Meyvelerinin Kimyasal Kompozisyonu ve Antioksidan Aktivitesi

Aigul USUBALİEVA, Vildan EYİZ, Nurzat TOTUBAEVA, İsmail TONTUL

Süt İşlemede Ultrason Kullanımı

Cesur MEHENKTAŞ

Elektronik Burun Metal Oksit Yarı İletken Sensörlerin Gıda Analizlerinde Kullanımı

Yasemin İNCEGÜL, Gülcan ÖZKAN, Ali Can İNCEGÜL, Kubilay TAŞDELEN

Geleneksel Yöntem ile Üretilen Adıyaman Peynirinin Bazı Fizikokimyasal, Tekstürel ve Mikrobiyolojik Özellikleri

Özge GÖKÇE, Damla BAYANA, Ahmet KÜÇÜKÇETİN, Oğuz GÜRSOY

Yüksek Yoğunluklu Ultrason ve Yüksek Basınçlı Homojenizasyona Maruz Bırakılan Bezelye Proteini Nanoemülsiyonlarının Depolanması Sırasında Emülsifiye Edici Özellik, Parçacık Boyutu, Bulanıklık ve Lipid Oksidasyonundaki Değişimler

Gülçin YILDIZ