İskemik Ön Koşullanma ve Sonradan koşullanma mekanizmalarından biri: Potasyum–ATP kanalları (mitokondriyal ve sarkolemmal)

Önce 1986’da Murray ve ark tarafından, “iskemik ön koşullanma”, sonrasında da 2003’te Vinten-Johansen grubu tarafından “sonradan koşullanma” tanımlanmış ve bu güçlü endojen mekanizmaların dokuyu iskemi-reper füzyon hasarına karşı koruyucu etkileri, bugüne dek birçok organda, birçok çalışma ile gösterilmiştir. Her iki fenomenle ilgili birçok mekanizma ileri sürülse de iskemik ön koşullanma yoluyla olan adaptasyonun; ade nozin etkisi ile oluşan, potasyum-ATP (KATP) kanal akti vasyonu tarafından oluşturulduğu bildirilmiştir. Sonradan koşullanmanın ise; ekstraselüler sinyal regüle kaskad ½, fosfatidil inozitol 3-kinaz, guanilil siklaz ile mitokondriyal potasyum-ATP kanallarının aktivasyonuna ve nitrik oksit üretimine bağlı olduğu ileri sürülmüştür. İÖ ve SK’nın koruyucu mekanizmaları henüz kesin olarak bilinmemekle birlikte, potasyum-ATP kanallarının bu mekanizmalar içinde çok önemli bir yer tuttuğu dikkati çekmektedir.

Potassium-ATP channels (mitochondrial and sarcolemmal): One of the mechanisms of ischemic preconditioning and postconditioning

Firstly in 1986 “ischemic preconditioning” was determined by Murray et al, then in 2003 “postconditioning” by the group of Vinten-Johansen and the preventive effects on the tissue of these strong endogeneous mechanisms against ischemia-reperfusion has been shown with lots of study on many organs up to date. Although lots of mechanisms were propounded for both phenomenon, the adaptation via ischemic preconditioning was created by potassium-ATP channels which was occurred by the effect of adenosine was expressed. In the aspect of ischemic postconditioning; it is asserted that, it depends on the activation of extracellular signal regulated kinase cascade ½, phosphatidyl inositol 3- kinase, guanylyl cyclase and mitochondrial potassium ATP channels and production of nitric oxide. In spite of the protective mechanisms of ischemic preconditioning and postconditioning were not clearly known until now, considerable importance of potassium ATP channels among those mechanisms is remarkable.

___

  • 1. Murray CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74(5):1124-36.
  • 2. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol 2003;285(2):H579-88.
  • 3. Mei DA, Elliott GT, Gross GJ. KATP channels mediate late preconditioning against infarction produced by monophosphoryl lipid A. Am J Physiol 1996;271(6 Pt 2): H2723-9.
  • 4. Harun E, Dursun D, Ender S. İskemik önkoşullanma. Anadolu Kardiyol Derg 2003;3(2):144-9.
  • 5. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation 2005;111(2):194-7.
  • 6. Yao Y, Li L, Li L, Gao C, Shi C. Sevoflurane postconditioning protects chronically-infarcted rat hearts against ischemia-reperfusion injury by activation of pro-survival kinases and inhibition of mitochondrial permeability transition pore opening upon reperfusion. Biol Pharm Bull 2009;32(11):1854-61.
  • 7. Şengül İ, Şengül D. İskemik önkoşullanma ve sonradan koşul lanma mekanizmalarından ikisi: İntraselüler sinyalizasyon ve adenozin. Cumhuriyet Tıp Derg 2010;32(1):127-31.
  • 8. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: a form of “modified reperfüsion” protects the myocardium by activating the phosphatidylinositol 3-kinase-akt pathway. Circ Res 2004;95(3):230-2.
  • 9. Bopassa JC, Ferrera R, Gateau-Roesch O, Couture –Lepetit E, Ovize M. PI3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 2006;69(1):178-85.
  • 10. Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning’s protection is not depended on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanyl cyclase activation. Basic Res Cardiol 2005;100(1):57-63.
  • 11. Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM. Multiple brief coronary occlusions during early reperfusion protects rabbit hearts by targeting cell signal pathways. J Am Coll Cardiol 2004;44(5):1103-10.
  • 12. Serviddio G, Venosa ND, Fedrici A, D'Agostino D, Rollo T, Prigigallo F, et al. Brief hypoxia before normoxic reperfusion (postconditioning) protects the heart against ischemia-reperfusion injury by preventing mitochondria peroxyde production and glutathione depletion. FASEB J 2005;19(3),354-61.
  • 13. Sun YH, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, et al. Hypoxic postconditioning reduce cardiomyocyte loss by inhibiting ROS generation and intracelular Ca++ overload. Am J Physiol Heart Circ Physiol 2005;288(4),H1900-8.
  • 14. Obal D, Dettwiler S, Favoccia C, Scharbatke H, Preckel B, Schlack W. The influence of mitochondrial K-ATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth Analg 2005;101(5):1252-60.
  • 15. Dosenko NE, Nagibin VS, Tumanovskaya LV, Moibenko AA, Vaage J. Postconditioning prevents apoptotic necrotic and autophagic cell death in culture. Fiziol Zh 2005;51(3):12-7.
  • 16. Moon JG, Lim HC, Gye MR, Oh JS, Park JW. Postconditioning attenuates ischemia-reperfusion injury in rat skin flap. Microsurgery 2008;28(7):531-7.
  • 17. Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, et al. Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 2008;39(8):2362-9.
  • 18. Serviddio G, Romano AD, Gesualdo L, Tamborra R, Di. Palma AM, Rollo T, et al. Postconditioning is an effective strategy to reduce renal ischaemia/reperfusion injury. Nephrol Dial Transplant 2008;23(5):1504-12.
  • 19. Santos CH, Gomes OM, Pontes JC, Miiji LN, Bispo MA. The ischemic preconditioning and postconditioning effect on the intestinal mucosa of rats undergoing mesenteric ischemia/reperfusion procedure. Acta Cir Bras 2008;23(1):22-8.
  • 20. Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Garcia C, Schaub MC, et al. Differential effects of anesthetics on mitochondrial K(ATP) channel activity and cardiomyocyte protection. Anesthesiology 2002;97(1):15-23.
  • 21. Xu DZ, Lu Q, Kubicka R, Deitch EA. The effect of hypoxia/ reoxygenation on the cellular function of intestinal epithelial cells. J Trauma 1999;46(2):280-5.
  • 22. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple- organ-failure syndrome. Arch Surg 1986;121(2):196-208.
  • 23. Li YS, Wang ZX, Li C, Xu M, Li Y, Huang WQ, et al. Proteomics of ischemia/reperfusion injury in rat intestine with and without ischemic postconditioning. J Surg Res 2009 Oct 24. [Epub ahead of print].
  • 24. Sengul I, Sengul D, Hasanoglu A, Urhan MK, Taner AS, Guler O. Effect of postconditioning on intestinal ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion in rats. The 45th Congress of the European Society for Surgical Research (ESSR), Faculty of Medicine, University of Geneva (Centre Médical Universitaire-CMU), 9-12 June 2010 Geneva, SWITZERLAND. Br J Surg 2010;97(S4):71-2.
  • 25. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983;305(5930):147–8.
  • 26. Yamada K, Inagaki N. ATP-sensitive K+ channels in the brain: sensors of hypoxic conditions. News Physiol Sci 2002;17:127-30.
  • 27. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 2003;285(3):921–30.
  • 28. Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP- sensitive K+ channels and myocardial preconditioning. Circ Res 1999;84 (9):973-9.
  • 29. Teoh LK, Grant LR, Hulf JA, Pugsley WB, Yellon DM. The effect of preconditioning (ischemic and pharmacological) on myocardium necrosis following coronary artery bypass surgery. Cardiovasc Res 2002;53(1):175- 80.
  • 30. Grover GJ, Mc Cullough JR, Henry DE, Conder ML, Sleph PG. Anti- ischemic effects of the potassium channel activators pinacidil and cromacalim and the reversal of these affects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 1989;251(1):98-104.
  • 31. Grover GJ, Dzwonczyk S, Parham C, Sleph PG. The potective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther 1990;4(2):465-74.
  • 32. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevent myocardial preconditioning in dogs. Circ Res 1992;70(2): 223-33.
  • 33. Auchampach JA, Grover GJ, Gross GJ. Blockade of ischemic preconditioning in dogs by the novel ATP-dependent K+ channel antagonist sodium 5-hydroxdecanoate. Cardiovasc Res 1992;26(11):1054-62.
  • 34. Downey JM, Cohen MV. Arguments is favor of protein kinase C playing an important role in ischemic preconditioning. Basic Res Cardiol 1997;92(suppl 2):37-9.
  • 35. Grover GJ, Dzwonczyk S, Parham C, Sleph PG. The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther 1990;4(2):465-74.
  • 36. Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, et al. Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion in mice. J Clin Invest 2002;109(4):509-16.
  • 37. Dhein S, Pejman P, Krüsemann K. Effects of the I (K.ATP) blockers glibenclamide and HMR1883 on cardiac electrophysiology during ischemia and reperfusion. Eur J Pharmacol 2000;398(2):273-84.
  • 38. Tanno M, Miura T, Tsuchida A, Miki T, Nishino Y, Ohnuma Y, et al. Contribution of both the sarcolemmal KATP and mitochondrial KATP channels to infarct size limitation by KATP channel openers: Differences from preconditioning in the role of sarcolemmal KATP channels. Naunyn Schmiedeberg’s Arch Pharmacol 2001;364(3):226-32.
  • 39. Garlid KD. Opening mitochondrial K(ATP) in the heart-what happens, and what does not happen. Basic Res Cardiol 2000;95(4):275-9.
  • 40. Wang Y, Hirai K, Ashraf M. Activation of mitochondrial ATP- sensitive K+ channel for cardiac protection against ischemic injury is dependent on protein kinase C activity. Circ Res 1999;85(8):731-41.
  • 41. Garlid KD, Paucek P, Yarov-Yarovoy B, Murray HN, Darbenzio RB, D'Alonzo AJ, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP- sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 1997;81(6):1072-82.
  • 42. Das B, Sarkar C, Karanth KS. Effects of administration of nicorandil or bimakalim prior to and during ischemia or reperfusion on survival rate, ischemia/reperfusion-induced arrhyhmias and infarct size in anesthetized rabbits. Naunyn Schmiedebergs Arch Pharmacol 2001;364(5):383-96.
  • 43. Toyoda Y, Friehs I, Parker RA, Levitsky S, McCully JD. Differential role of sarcolemmal and mitochondrial KATP channels in adenosine- enhanced ischemic preconditioning. Am J Physiol Heart Circ Physiol 2000; 279(6):H2694-703.
  • 44. Gaskin, FS, Kamada K, Yusof M, Korthuis RJ. 5'-AMP-activated protein kinase activation prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 2007;292(1):H326-32.
  • 45. Gaskin FS, Kamada K, Yusof M, Durante W, Gross G, Korthuis RJ. AICAR preconditioning prevents postischemic leukocyte rolling and adhesion: role of K(ATP) channels and heme oxygenase. Microcirculation 2009;16(2):167-76.
  • 46. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin HE, Halkos ME, Kerendi F, et al. Postconditioning--A new link in nature's armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol 2005;100(4):295-310.
  • 47. Donato M, D'Annunzio V, Berg G, Gonzalez G, Schreier L, Morales C, et al. Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+(ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 2007;49(5):287-92.
  • 48. Loukogeorgakis SP, Williams R, Panagiotidou AT, Kolvekar SK, Donald A, Cole TJ, et al. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)- channel dependent mechanism. Circulation 2007;116(12):1386-95.
  • 49. Pateliya BB, Singh N, Jaggi AS. Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice. Biol Pharm Bull 2008;31(9):1755-60.
  • 50. Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, et al. Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K(ATP) channels during reperfusion. Basic Res Cardiol 2008;103(5):472-84.
  • 51. Couvreur N, Tissier R, Pons S, Chenoune M, Waintraub X, Berdeaux A, et al. The ceiling effect of pharmacological postconditioning with the phytoestrogen genistein is reversed by the GSK3beta inhibitor SB 216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5- dione] through mitochondrial ATP-dependent potassium channel opening. J Pharmacol Exp Ther 2009;329(3):1134-41.
  • 52. Şengül İ, Şengül D. Ischemic preconditioning and postconditioning in cardiovascular surgery. Cumhuriyet Med J 2010;32(3):365-73.
Yeni Tıp Dergisi-Cover
  • ISSN: 1300-2317
  • Yayın Aralığı: 4
  • Başlangıç: 2018
  • Yayıncı: -