Beckwith-Wiedemann Sendromu’nda cerrahi gerektiren dil büyüklüğü

Beckwith-Wiedemann Sendromu (BWS) 11p15,5 loku-sundaki genleri etkileyen epigenetik olaylar veya mutas-yonlar sonucu oluşan nadir bir genetik hastalıktır. Çoğunlukla sporadiktir, az bir kısmı ailevi geçiş gösterir. Makrozomi, makroglossi ve karın ön duvarı defektleri üç ana bulgusudur ve makroglossi kraniyofasyal anomalile-rin içinde en sık görülenidir. Sporadik BWS’li bebeklerin önemli bir kısmının yardımcı üreme teknikleri [in-vitro fertilizasyon (IVF)-hücre içi sperm enjeksiyonu (ICSI)] kullanılarak doğmuş olması dikkat çekmiş ve yardımcı üreme teknikleri ile BWS arasında ilişki gösterilmiştir. Burada ICSI gebeliği olan ve 5 yaşında iken ağır dil büyüklüğü nedeni ile gelerek BWS tanısı alıp, buna yöne-lik cerrahi gerektiren bir olgu sunulmaktadır.

Macroglossia which is requiring surgery in Beckwith-Wiedemann Syndrome

Beckwith-Wiedemann Syndrome is a rare genetic disorder due to disruption of the genomic imprinting of one or more genes or mutations at 11p15.5 locus. Most cases are sporadic, only few are familial. BWS is characterized mainly by macroglossia, macrosomia and abdominal wall defects. Macroglossia is the most common one among the craniofacial anomalies. It was noticed that most patients with sporadic BWS are the product of conceptions with assisted reproductive technologies and the association between BWS and assisted reproductive technologies is confirmed with many studies. Here, we report a 5 years old female patient, presented with severe macroglossia which required “wedge resection” and diagnosed as BWS, who was the product of an intracytoplasmic sperm injection pregnancy.

___

  • 1. Beckwith JB. Extreme cytomegaly of adrenal fetal cortex, omphalocele, hyperplasia of kidneys and pancreas and leydig cell hyperplasia: Another syndrome? Presented at the Annual Meeting of the western Society for Pediatrics Research 1963.
  • 2. Wiedemann Hr. Familial Malformation Complex With Umbilical Hernia and Macroglossia--A "New Syndrome"? J Genet Hum 1964;13: 223-32.
  • 3. Reish O, Lerer I, Amiel A. Wiedemann-Beckwith syndrome: further prenatal characterization of the condition. Am J Med Genet 2002;107: 209–13.
  • 4. Richard CW 3rd, Boehnke M, Berg DJ, Lichy JH, Meeker TC, Hauser E, et al. A radiation hybrid map of the distal short arm of human chromosome 11, containing the Beckwith-Wiedemann and associated embryonal tumor disease loci. Am J Hum Genet 1993;52:915-21.
  • 5. Gomes MV, Ramos ES. Beckwith-Wiedemann syndrome and isolated hemihyperplasia. Sao Paulo Med J 2003;121: 133-8.
  • 6. Derek Lim, Sarah C. Bowdin, Louise Tee, Kirby GA, Blair E, Fryer A, et al. Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies, Human Reproduction 2009;1: 1–7.
  • 7. Engstrom W, Lindham S, Schofield P. Wiedemann Beckwith Syndrome. Eur J Pediatr 1988;147: 450-7.
  • 8. Castillo-Morales R. Die Orofacial Regulationstherapie. Munchen, Germany: Pflaum Verlag; 1991.
  • 9. Clauser L, Galie` M, Curioni C. Lymphangioma of the tongue. A case report. Rivista Italiana di Chirurgia Plastica 2000;32: 157-9.
  • 10. Menard RM, Delarie J, Schendel SA. Treatment of the craniofacial complications of Beckwith Wiedemann syndrome. Plast Reconstr Surg 1995;96: 27.
  • 11. Siddiqui A, Pensler JM. The efficacy of tongue resection in treatment of symtomatic macroglossia in the child. Ann Plast Surg 1990;25: 14.
  • 12. Hussain K, Cosgrove KE, Shepherd RM, Luharia A, Smith VV, Kassem S. Hyperinsulinemic hypoglycemia in Beckwith-Wiedemann syndrome due to defects in the function of pancreatic beta-cell adenosine triphosphate-sensitive potassium channels. J Clin Endocrinol Metab 2005; 90: 4376-82.
  • 13. DeBaun MR, King AA, White N. Hypoglycemia in Beckwith-Wiedemann syndrome. Semin Perinatol 2000;24: 164-71 .
  • 14. Fukuzawa R, Umezawa A, Morikawa Y, Kim KC, Nagai T, Hata J. Nesidioblastosis and mixed hamartoma of the liver in Beckwith-Wiedemann syndrome: case study including analysis of H19 methylation and insulin-like growth factor 2 genotyping and imprinting. Pediatr Dev Pathol 2001;4: 381-90.
  • 15. Chen CP, Lin SP, Hwu YM, Chang TY, Wang W. Prenatal identification of fetal overgrowth, abdominal wall defect, and neural tube defect in pregnancies achieved by assisted reproductive technology. Prenat Diagn 2004;24: 396–8.
  • 16. O’Connor C, Levine D. Case 49: Beckwith-Wiedemann syndrome. Radiology 2002;224: 375-8.
  • 17. Bas F, Kayserili H, Darendeliler F, Tükel T, Bundak R, Eryılmaz SB, ve ark. Beckwith Wiedemann sendromlu 8 olguda klinik/genetik yaklasım ve izlem süreci. İ.Ü. İstanbul Tıp Fakültesi Mecmuası 2000;63: 181-7.
  • 18. Khatib Z, Levi A, Pefkarou A, Escalon E. Acute lymphocytic leukemia in a child with Beckwith-Wiedemann syndrome. J Pediatr Hematol Oncol 2004;26: 45-7.
  • 19. Baldisserotto M, Peletti AB, Angelo de Araujo M, Pertence AP, Dora MD, Maciel EO, et al. Beckwith-Wiedemann syndrome and bilateral adrenal pheochromocytoma: Sonography and MRI findings. Pediatr Radiol 2005;35: 1132-4
  • 20. Akata D, Haliloglu M, Ozmen MN, Akhan O. Bilateral cystic adrenal masses in the neonate associated with the incomplete form of Beckwith-Wiedemann syndrome. Pediatr Radiol 1997;27: 1-2.
  • 21. Anoop P, Anjay MA. Bilateral benign haemorrhagic adrenal cysts in Beckwith-Wiedemann syndrome: Case report. East Afr Med J 2004;81: 59-60.
  • 22. Takano H, Sato Y, Kao SC, D’Alessandro MP. Enlarging giant liver cyst in Beckwith-Wiedemann syndrome. Pediatr Radiol 1997;27: 619-20.
  • 23. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 2003;72: 156–60.
  • 24. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 2003;72: 1338–41.
  • 25. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W et al. et al. Beckwith– Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 2003;40: 62–4.
  • 26. Menezo Y Jr, Viville S, Veiga A. Epigenetics and assisted reproductive technology. Fertil Steril 2006;85: 269.
  • 27. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998;12:949–57.
  • 28. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 2004;74: 599–609.
  • 29. Chang AS, Moley KH, Wangler M, Feinberg AP, DeBaun MR. Association between Beckwith–Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril 2005;83: 349–54.
  • 30. Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 2005;42: 289–91.
  • 31. Sutcliffe AG, Peters CJ, Bowdin S, Luharia A, Cooper W et al. Assisted reproductive therapies and imprinting disorders: a preliminary British survey. Hum Reprod 2006;21: 1009–11.
  • 32. Rossignol S, Steunou V, Chalas C, Kerjean A, M Rigolet M, E Viegas-Pequignot E, et al. The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 2006;43: 902–7.