BİYOKÜTLENİN KATALİTİK HİDROTERMAL SIVILAŞTIRMA YÖNTEMİ İLE SIVILAŞTIRILMASI

Biyokütle ısıl, biyolojik ve fiziksel birçok yöntemle daha değerli enerji formlarına dönüştürülebilmektedir. Biyokütlenin geleneksel yöntem ile doğrudan yakılması sonucu enerji elde edilebildiği gibi çeşitli termokimyasal işlemlerle de biyokütleden katı, sıvı ve gaz yakıtlar elde edilebilmektedir. Biyokütledenbiyoyakıt üretimi için gazlaştırma, piroliz ve sıvılaştırma gibi birçok termokimyasal yöntem kullanılmaktadır. Biyokütleden elde edilen biyo yağ ın geleneksel kullanıma göre birçok avantajı vardır. Hidrotermal sıvılaştırma biyokütlenin yüksek enerji içeriğine sahip sıvı ürünlere dönüştürülmesinde kullanılan termokimyasalproseslerden biridir. Genellikle kritik altı su koşullarında ve yüksek basınçta gerçekleştirilir ve biyo-yağ olarak adlandırılan organik bir sıvı elde edilir. Suyun eşsiz ve çevre dostu bir çözücü olması, işlemin ıslak biyokütlelere uygulanabilmesi ve dolayısıyla biyokütlenin kurutulma zorunluluğunun olmaması, piroliz gibi işlemlerden daha düşük sıcaklıkta gerçekleştirilebilmesi ve yüksek enerji verimliliği hidrotermal sıvılaştırmayı cazip hale getirmektedir. Hidrotermal sıvılaştırma prosesinde kullanılan su eşsiz ve çevre dostu bir çözücüdür, bu proses ıslak biyokütlelerede uygulanabilir, piroliz gibi işlemlerden daha düşük sıcaklıkta gerçekleştirilir ve yüksek enerji verimliliğine sahiptir tüm bu avantajla göz önüne alındığında hidrotermal sıvılaştırma prosesi diğer termokimyasal proseslere kıyasla daha cazip hale gelmektedir. Bu çalışmada prosopisfarcta bitkisi 350 oC de Al2O3 ve NaOH katalizörleri varlığında katalitik hidrotermal sıvılaştırma yöntemi ile sıvı ve katı ürünlere dönüştürülmüştür. Elde edilen ürünler GC-MS analiz yöntemi ile analize dilmiştir. GC-MS analiz sonuçlarına gore elde edilen sıvı ürünler genel olarak C6-C27 karbonlu mono aromatik, alifatik, poliaromatik ve oksijenli bileşiklerden oluşmaktadır

LIQUEFACTION OF BIOMASS BY CATALYTIC HYDROTHERMAL LIQUEFACTION PROCESS

Biomass can be transformed into more valuable forms of energy by thermal, biological and physical methods. As energy can be obtained as a result of direct combustion of biomass by traditional methods, also, solid, liquid and gaseous fuels can be obtained from biomass by using various thermochemical processes. For the production of biofuels from biomass, many thermochemical methods such as gasification, pyrolysis and liquefaction are used. Bio-oil obtained from biomass has many advantages over traditional use. Hydrothermal liquefaction is one of the thermochemical processes used to convert biomass into liquid products with high energy content. It is usually carried out under subcritical water conditions and at high pressure and an organic liquid called biooil is obtained. Hydrothermal liquefaction becomes attractive because water is a unique and environmentally friendly solvent, the process can be applied to wet biomass and therefore the biomass does not have to be dried; it can be performed at a lower temperature than the processes such as pyrolysis and has high energy efficiency. Water used in hydrothermal liquefaction process is a unique and environmentally friendly solvent,so this process can also be applied to wet biomasses. It is carried out at a lower temperature than the temperature of other processes such as pyrolysis and has high energy efficiency. Considering all these advantages, the hydrothermal liquefaction process becomes more attractive than other thermochemical processes. In this study, prosopisfarcta plant was converted to liquid and solid products by catalytic hydrothermal liquefaction in the presence of Al2O3 and NaOH catalysts at 350 °C. According to the GC-MS analysis results, liquid products are generally composed of mono aromatic, aliphatic, polyaromatic and oxygenated compounds with C6-C27 carbons.

___

  • Bhaskar, T., Bhavya, B., Singh, R., Naik, D., Kumar, A., Goyal, H. (2011). Thermochemical Conversion of Biomass to Biofuels. Biofuels; Alternative Feedstocks and Conversion Processes. 51-77.
  • Bridgwater, AV. (2003) Renewable Fuels and Chemicals By Thermal Processing of Biomass. Chemical Engineering Journal, 91;87-102.
  • Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes, The Journal of Supercritical Fluids, 47 (3) 373-381.
  • Carvalho, WS., Cunha, IF., Pereira, MS., Ataíde, CH. (2015). Thermal decomposition profile and product selectivity of analytical pyrolysis of sweet sorghum bagasse: Effect of addition of inorganic salts. Industrial Crops and Products, 74, 372–80.
  • Chen, M., Wang, J., Zhang, M., Chen, M., Zhu, X., Min, F., Tan, Z. (2008). Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 82 (1): 145-150.
  • Chen, W.T., Zhang, Y., Zhang, J., Yu, G., Schideman, L.C., Zhang, P. et al., (2014). Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresource Technology, 152 ; 130–9.
  • Çolak, U., Durak, H., Genel S. (2018). Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. The Journal of Supercritical Fluids, 140, 53–61.
  • D. Elliott. (2011). Thermochemical processing of biomass. Chichester, UK: John Wiley & Sons Ltd. Demirbas¸ A.(2005) Thermochemical conversion of biomass to liquid products in the aqueous medium. Energy Sources, 27:1235-43.
  • Durak H., Aysu T. (2015). Effect of pyrolysis temperature and catalyst on production of bio-oil and bio-char from avocado seeds. Research On Chemıcal Intermedıates, 41; 8067-8097.
  • Durak, H., Aysu, T. (2014). Effects of catalysts and solvents on liquefaction of Onopordum heteracanthum for production of bio-oils. Bioresource Technology,166, 309-317.
  • Durak, H., Aysu, T. (2016). Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L. The Journal of Supercritical Fluids, 108; 123-135.
  • Durak, H., Genel, Y. (2018). Hydrothermal conversion of biomass (Xanthium strumarium) to energetic materials and comparison with other thermochemical methods. The Journal of Supercritical Fluids, 140, 290-301.
  • Fagbemi, L., Khezami, L., CAPART, R. (2001). Pyrolysis Products from Different Biomasses. Applied Energy, 69, 293-306.
  • Gabir, H., Hameed, BH. (2017). Recent progress on catalytic pyrolysis of lignocellulosic biomass to highgrade bio-oil and bio-chemicals. Renewable and Sustainable Energy Reviews, 70, 945- 967.
  • Gao, Y., Liu, S., Du, J., Wang, Z., Wang, H., Zhao, T. (2015) Conversion and extracting bio-oils from rod-shaped cornstalk by sub-critical water. Journal of Analytical and Applied Pyrolysis, 115 ; 316–25.
  • Goyal, HB., Seal, D., Saxena, R.C. (2008). Bio-fuels from thermochemical conversion of renewable resources a review, Renewable and Sustainable Energy Reviews, 12 (2): 504-517.
  • Hattori HS. (2001). Solid base catalysts: generation of basic sites and application toorganic synthesis. Applied Catalysis A, 222:247–59.
  • Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., Kishimoto, T. (2005). Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products, Chemical Engineering Journal, 108; 127–37.
  • Karaosmanoğlu, F., Tetik, E. (1999). Charcoal from the Pyrolysis of Rapeseed Plant Straw-Stalk. Energy Sources, 21:503-510.
  • Kim, SW., Koo, BS., Lee, DH. (2014). Catalytic pyrolysis of palm kernel shell waste in a fluidized bed. Bioresource Technology, 167:425–32.
  • Li, J., Yan, R., Xiao, B., Wang, X., Yang, H. (2007). Infuence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor, Energy and Fuels, 21 (4): 2398-2407.
  • Mckendry, P. (2002). Energy production from biomass (part 1): overview of biomass, Bioresource Technology, 3 (1) 37–46.
  • Mınowa, T., Murakamı, M., Dote, Y., Ogı, T., Yokoyama S. (1995) Oil production from garbage by thermochemical lıquefaction. Biomass and Bioenergy, 8 (2). 117-120.
  • Mohan, D., Pittman, CU., Steele, PH. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels, 20 (3): 848-889.
  • Patil, V., Tran, K.Q., Giselrod, H.R. (2008). Towards sustainable production of biofuels from microalgae, International Journal of Molecular Sciences 9;1188-1195.
  • Peterson, A.A., Vogel, F., Lachance, R.P., Froling, M., Antal, JMJ., Tester, J.W. (2008). Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy & Environmental Science, 1;32-65.
  • Rahimi, AR, Ulbrich, A., Coon, JJ., Stahl, SS. (2014). Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 515,249–252.
  • Savage, P.E. (2009). A perspective on catalysis in sub- and supercritical water, The Journal of Supercritical Fluids, 47;407-414.
  • Savage, P.E., Levine, R.B., Huelsman, C.M. (2010). Hydrothermal processing of biomass: Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, (eds: Crocker, M.), RSC Publishing Cambridge, 192-215.
  • Shuping, Z., Yulong, W., Mingde, Y., Kaleem, I., Chun, L., Tong, J. (2010). Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy, 1-6.
  • Tekin, K., Karagöz, S., Bektaş, S. (2012). Hydrothermal liquefaction of beech wood using a natural calcium borate mineral, The Journal of Supercritical Fluids, 72; 134-139.
  • Toor, S.S., Rosendahl, L., Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water Technologies. Energy, 36 (5) 2328-2342.
  • Wang, S., Dai, G., Yang, H., Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: Astate of the art review. Progress in Energy and Combustion Science 62 33-86.
  • Wang, Z., Wang, F., Cao, J., Wang, J. (2010). Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel Processing Technology, 91; 942–950.
  • Yanık, J., Kornmayer, C., Saglam, M., Yüksel, M. (2007). Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products. Fuel Processing Technology, 88 (10): 942-947.