Nanoteknoloji Temelli Antimikrobiyal Yüzey Kaplama Teknolojileri ve Potansiyel Uygulama Alanları

Nanoteknoloji, 100 nanometreden daha küçük boyutlara sahip organik ve/veya inorganik partiküller ve bu partikülleri kullanarak geliştirilen her türlü teknolojik çalışmaları kapsayan geniş bir çalışma alanına sahiptir. Nanopartiküllerin üretiminde makro boyutlardaki malzemelerin nano boyutlara indirgendiği top-down yaklaşımları ve atom / moleküllerin farklı kimyasal reaksiyonlarla nano boyutlara çıkarıldığı bottom-up yaklaşımından faydalanılmaktadır. Günümüzde daha çok top-down yaklaşımlarla üretilen nanopartiküller gıda sanayii, su arıtma sistemleri, kozmetik ve tıp gibi pek çok endüstriyel alanda kullanılabilmektedir. Katı bir yüzeye doğru hareket etme, tutunma ve kolonileşme eğilimindeki mikroorganizmalar, bu yüzeylerde mikrobiyal biyofilm oluşumuna neden olmaktadır. Özellikle gıdaların işlendiği endüstriyel ortamlarda, su boru sistemlerinde, biyolojik dokularda ve tıbbi implantlarda mikrobiyal biyofilm oluşumları geleneksel antimikrobiyal uygulamalara karşı yüksek direnç göstermektedir. Bu nedenle yalnızca doğrudan insanlarla temas halinde olan yüzeyler değil gıdaların temas ettiği yüzeylerin de farklı antimikrobiyal kaplama teknikleriyle mikroorganizmalara karşı dirençli hale getirilmesi ihtiyacı ortaya çıkmıştır. Bu derleme çalışmasında, nanomalzemelerin üretim yöntemleri, farklı antimikrobiyal yüzey kaplama teknikleri, antimikrobiyal nanopartiküllerin mikroorganizmalar üzerindeki etki mekanizmaları ve antimikrobiyal yüzeylerin potansiyel kullanım alanları hakkında bilgi verilmesi amaçlanmıştır

Nanotechnology-Based Antimicrobial Surface-Coating Technologies and Their Potential Applications

Nanotechnology has a wide study field including organic and/or inorganic particles smaller than 100 nanometers and all kinds of technological studies developed using these particles. In the production of nanoparticles, top-down approaches in which macro-sized materials were reduced to nano-sizes and bottom-up approaches in which atoms / molecules were increased to nano-sizes by different chemical reactions, are used. Currently, nanoparticles produced by top-down approaches might be used in many industries such as food industry, water treatment systems, cosmetics, and medicine. Microorganisms that tend to move, adhere, and colonize a solid surface, cause the formation of microbial biofilm on these surfaces. Microbial biofilms show high resistance to traditional antimicrobial applications in industrial environments especially where food is processed, water piping systems, biological tissues and medical implants. Therefore, the requirement has emerged to make not only the surfaces in direct contact with people, but also the surfaces in contact with food, to be resistant to microorganisms by different antimicrobial coating techniques. In this review, it is aimed to give information about the production methods of nanomaterials, different antimicrobial surface- coating techniques, the mechanism of antimicrobial nanoparticles on microorganisms and potential applications of antimicrobial surfaces

___

  • Abe A, Genzer J, De Jeu WH, Kobayashi S, Leibler L, Long TE, Manners I, Terentjev EM, Vicent M, Voit B, Wegner G, Wiesner U. 2011. Advances in Polymer Sciences. In: Börner HG, Lutz J-F (editors). Bioactive Surfaces. Springer, London. ISBN 978-3-642-20155-4.
  • Adlhart C, Gouveia I, Melo LF, Crijns F. 2018. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. Journal of Hospital Infection, 99: 239–249. doi: 10.1016/j.jhin.2018.01.018.
  • Ateş H, Bahçeci E. 2015. Nano malzemeler için üretim yöntemleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 3(2): 483-499.
  • Anon 2021. Raporlar, Paşabahçe. https://campaigns.pasabahce. com/tr/v-block/raporlar [Erişim tarihi, 27.05.2021].
  • Baier G, Cavallaro A, Friedemann K, Müller B, Glasser G, Vasilev K, Landfester K. 2013. Enzymatic degradation of poly(l-lactide) nanoparticles followed by the release of octenidine and their bactericidal effects. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1): 131–139. doi: 10.1016/j.nano.2013.0.
  • Baveja J, Willcox MD, Hume EB, Kumar N, Odell R, Poole- Warren L. 2004. Furanones as potential antibacterial coatings on biomaterials. Biomaterials, 25(20): 5003–5012. doi: 10.1016/j.biomaterials.2004.02.
  • Bieser AM, Tiller JC. 2011. Mechanistic considerations on contact-active antimicrobial surfaces with controlled functional group densities. Macromolecular Bioscience, 11: 526-534. doi: 10.1002/mabi.201000398.
  • Boda SK, Basu B. 2016. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. Journal of Biomedical Materials Research Part B, 105(7): 2174−2190. doi: 10.1002/jbm.b.33740.
  • Bogdanos DP, Sakkas LI. 2019. Infections: Viruses and Bacteria. In: Mosaic of Autoimmunity. Elsevier, pp 203–213. https://doi.org/10.1016/B978-0-12-814307-0.00021-9.
  • Bowler PG. 2018. Antibiotic resistance and biofilm tolerance: A combined threat in the treatment of chronic infections. Journal of Wound Care, 27(5): 273–277. doi: 10.12968/jowc.2018.27.5.273.
  • Bridges AW, Garcia AJ. 2008. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. Journal of Diabetes Science and Technology, 2: 984-994. doi: 10.1177/193229680800200628.
  • Bromham L. 2008. Why do species vary in their rate of molecular evolution? Biology Letters, 5(3): 401–404. doi: 10.1098/rsbl.2009.0136.
  • Campardelli R, Della Porta G, Gomez L, Irusta S, Reverchon E, Santamaria J. 2014. Au–PLA nanocomposites for photothermally controlled drug delivery. Journal of Materials Chemistry B, 2(4): 409–417. doi:10.1039/c3tb21099e.
  • Campoccia D, Montanaro L, Renata C. 2013. Biomaterials: A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34): 8533–8554. doi: 10.1016/j.biomaterials.2013.07.089.
  • Carpenter AW, Schoenfisch MH. 2012. Nitric oxide release: Part II. Therapeutic applications. Chemical Society Reviews, 41: 3742-3752. doi: 10.1039/C2CS15273H.
  • Champagne VK, Helfritch D. 2013. A demonstration of the antimicrobial effectiveness of various copper surfaces. Journal of Biological Engineering, 7: 8. doi: 10.1186/1754-1611-7-8.
  • Chan JFW, Lau SKP, To KKW, Cheng VCC, Woo PCY, Yuen K. 2015. Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clinical Microbiology Reviews, 28(2): 465–522. doi: 10.1128/CMR.00102-14.
  • Chen J, Guo Z, Wang H-B, Gong M, Kong XK, Xia P, Chen Q- W. 2013. Multifunctional Fe3O4 @ C@ Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials, 34(2): 571–581. doi: 10.1016/j.biomaterials.2012.10.002
  • Chen X, Hirt H, Li Y, Gorr SU, Aparicio C. 2014. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS One, 9(11): e111579. doi: 10.1371/journal.pone.0111579.
  • Cheng G, Xue H, Zhang Z, Chen S, Jiang S. 2008. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angewandte Chemie International Edition, 47: 8831-8834. doi: 10.1002/anie.200803570.
  • Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 42: 3066-3074. doi: 10.1016/j.watres.2008.02.021.
  • Cloutier M, Tolouei R, Lesage O, Lévesque L, Turgeon S, Tatoulian M, Mantovani D. 2014. Deposited via a hybrid plasma process on the long-term antibacterial features of silverdoped diamond like carbon coatings deposited via a hybrid plasma process. Biointerphases, 9(2): 029013. doi: 10.1116/1.4871435.
  • Cloutier M, Mantovani D, Rosei F. 2015. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol 3(11): 1–16. doi: 10.1016/j.tibtech.2015.09.002.
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial Biofilms. Annual Review of Microbiology. 49: 711−745.
  • Dancer SJ. 2004. How do we assess hospital cleaning? A proposal for microbiological standards for surface hygiene in hospitals, Journal of Hospital Infection, 56(1): 10–15. doi: 10.1016/j.jhin.2003.09.017.
  • Darouiche RO. 2004. Treatment of infections associated with surgical implants. The New England Journal of Medicine, 350(14): 1422–1429. doi: 10.1056/NEJMra035415.
  • Davies A, Bentley M, Field BS. 1968. Comparison of the action of vantocil, cetrimide and chlorhexidine on Escherichia coli and its spheroplasts and the protoplasts of Gram-positive bacteria. Journal of Applied Bacteriology, 31: 448–461. doi: 10.1111/j.1365-2672.1968.tb00394.x.
  • De Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD. 2006. Furanones. Progress in Molecular and Subcellular Biology, 42: 55–86
  • Devi R, Yadav S, Pundir CS. 2012. Au-colloids–polypyrrole nanocomposite film-based xanthine biosensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 394: 38–45. doi: 10.1016/j.colsurfa.2011.11.021.
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. 2015. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44: 278-284. doi: 10.1016/j.msec.2014.08.031.
  • Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K. 2015. Antimicrobial activity of carbon-based nanoparticles. Advanced Pharmaceutical Bulletin, 5(1): 19. doi: 10.5681/apb.2015.003.
  • Dobrucka R, Ankiel M. 2019. Possible applications of metal nanoparticles in antimicrobial food packaging. Journal of Food Safety, 39(2): e12617. doi: 10.1111/jfs.12617.
  • Duday D, Vreuls C, Moreno M, Frache G, Boscher ND, Zocchi G, Archambeau C, Van De Weerdt C, Martial J, Choquet P. 2013. Surface & coatings technology atmospheric pressure plasma modified surfaces for immobilization of antimicrobial nisin peptides. Surface and Coatings Technology, 218: 152– 161. doi: 10.1016/j.surfcoat.2012.12.045.
  • Dunning Hotopp JC. 2011. Horizontal gene transfer between bacteria and animals. Trends in Genetics, 27(4): 157–163. doi: 10.1016/j.tig.2011.01.005.
  • Dung DH, Serpone N, Gratzel M. 1984. Integrated systems for water cleavage by visiblelight – sensitization of TiO2 particles by surface derivatization with ruthenium complexes. Helvetica Chimica Acta, 67(4): 1012–1018. doi: 10.1002/hlca.19840670413.
  • Eby DM, Luckarift HR, Johnson GR. 2009. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Applied Materials & Interfaces, 1(7): 1553–1560. doi:10.1021/am9002155.
  • ECDC, 2013. European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011-2012. Stockholm: ECDC. https://www.ecdc. europa.eu/sites/default/files/media/en/publications/Publicati ons/healthcare-associated-infections-antimicrobial-use- PPS.pdf [Erişim tarihi: 25.08.2021]
  • El Badawy AM, Silva BG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Surface charge-dependent toxicity of silver nanoparticles. Environmental Science & Technology, 45(1): 283-287. doi: 10.1021/es1034188.
  • Ersöz M, Işıtan A, Balaban M. 2018. Nanoteknoloji 1. BilalOfest Basım-Yayın &Matbaacılık.
  • European Commission. 2011. Definition of a Nanomaterial. http://ec.europa.eu/environment/chemicals/nanotech/faq/defi nition_en.htm. [Erişim tarihi: 39.07.2021].
  • Fernandes P. 2006. Antibacterial discovery and development—the failure of success?. Nature biotechnology, 24(12): 1497-1503.
  • Fundeanu I, Klee D, Schouten AJ, Busscher HJ, van der Mei HC. 2010. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion. Acta Biomaterialia, 6(11): 4271- 4276. doi: 10.1016/j.actbio.2010.06.010.
  • Garrett TR, Bhakoo M, Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9):1049–1056. doi: 10.1016/j.pnsc.2008.04.001.
  • Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN. 2011. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 32(16): 3899-3909. doi: 10.1016/j.biomaterials.2011.02.013.
  • Green JD, Fulghum T, Nordhaus MA. 2011. Review of immobilized antimicrobial agents and methods for testing. Biointerphases, 6(4): 13–28. doi: 10.1116/1.3645195.
  • Gustavsson R, Mandenius C-F, Löfgren S, Scheper T, Lindner P. 2019. In situ microscopy as online tool for detecting microbial contaminations in cell culture. Journal of Biotechnology, 296: 53–60. doi: 10.1016/j.jbiotec.2019.03.011.
  • Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC. 2019. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale, 11(11): 4653–4682. doi: 10.1039/C9NR00117D.
  • Harris LG, Mead L, Müller-Obenlander E, Richards RG. 2006. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. Journal of Biomedical Materials Research Part A, 78A(1): 50-58. doi: 10.1002/jbm.a.30611.
  • Hetrick EM, Schoenfisch MH, Hetrick EM, Hetrick EM. 2006. Reducing implant-related infections: Active release strategies. Chemical Society Reviews, 35: 780–789. doi: 10.1039/b515219b.
  • Hizal F, Rungraeng N, Lee J, Jun S, Busscher HJ, van der Mei HC, Choi CH. 2017. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity. ACS Applied Material & Interfaces, 9(13): 12118-12129. doi: 10.1021/acsami.7b01322.
  • Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC. 2004. Nanoseparated polymeric networks with multiple antimicrobial properties. Advanced Materials, 16(12): 957– 961. doi: 10.1002/adma.200306253.
  • Hosseinidoust Z, Van de Ven TG, Tufenkji N. 2011. Bacterial capture efficiency and antimicrobial activity of phage- functionalized model surfaces. Langmuir, 27(9): 5472-5480. doi: 10.1021/la200102z.
  • Hosseinidoust Z, Olsson AL, Tufenkji N. 2014. Going viral: Designing bioactive surfaces with bacteriophage. Colloids and Surfaces B: Biointerfaces, 124: 2-16. doi: 10.1016/j.colsurfb.2014.05.036.
  • Hoseinnejad M, Jafari SM, Katouzian I. 2018. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2): 161-181. doi: 10.1080/1040841X.2017.1332001.
  • Houlding VH, Gratzel M. 1983. Photochemical H2 generation by visible-light – sensitization of TiO2 particles by surface complexation with 8-hydroxyquinoline. Journal of American Chemical Society, 105(17): 5695–5696.
  • Humphries M, Nemcek J, Cantwell JB, Gerrad JJ. 1987. The use of graft-copolymers to inhibit the adhesion of bacteria to solid-surfaces. FEMS Microbiology Ecology, 3(5): 297–304. doi: 10.1111/j.1574-6968.1987.tb02380.x.
  • Idumah CI, Hassan A, Ihuoma DE. 2019. Recently emerging trends in polymer nanocomposites packaging materials. Polymer-Plastics Technology and Materials, 58(10): 1054– 1109. doi: 10.1080/03602559.2018.1542718.
  • Isquith AJ, Abbott EA, Walters PA. 1972. Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Applied Microbiology, 24(6): 859-863. doi: 10.1128/am.24.6.859-863.1972.
  • Ivanova K, Fernandes MM, Mendoza E, Tzanov T. 2015. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Applied Microbiology and Biotechnology, 99(10): 4373–4385. doi:10.1007/s00253-015-6378-7.
  • Jaeger CD, Bard AJ. 1979. Spin trapping and electron-spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate systems. The Journal of Physical Chemistry, 83(24): 3146–3152.
  • Jalageri MD, Puttaiahgowda MY, Parambil MA, Kulal A. 2019a. Design of multifunctionalized piperazine polymer and its activity toward pathogenic microorganisms. Journal of Applied Polymer Science, 136(19): 47521. doi: 10.1002/app.47521.
  • Jalageri MD, Yashoda MP, Ajithkumar MP, Varadavenkatesan T. 2019b. Synthesis and fabrication of highly functionalized Jeffamine antimicrobial polymeric coating. Polymers for Advanced Technologies, 30(7): 1616–1627. doi: 10.1002/pat.4592.
  • Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA. 2020. Progress in microneedle-mediated protein delivery. Journal of Clinical Medicine, 9(2): 542. doi: 10.3390/jcm9020542 .
  • Jayakumar A, Heera KV, Sumi TS, Joseph M, Mathew S, Praveen G, Nair IC, Radhakrishnan EK. 2019. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food package application. International Journal of Biological Macromolecules, 136: 395-403. doi: 10.1016/j.ijbiomac.2019.06.018.
  • Jiang CC, Cao YK, Xiao GY, Zhu RF, Lu YP. 2017. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates. Royal Society of Chemistry, 7: 7531–7539. doi: 10.1039/C6RA25841G.
  • Jin G, Qin H, Cao H, Qian S, Zhao Y, Peng X, Zhang X, Liu X, Chu PK. 2014. Biomaterials synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials, 35(27): 7699–7713. doi: 10.1016/j.biomaterials.2014.05.074.
  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. 2009. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7): 2171-2178. doi: 10.1128/AEM.02001-07.
  • Kausar A. 2018. Polymer coating technology for high performance applications: Fundamentals and advances. Journa of Macromolecolar Science Part A, 55(5): 440–448. doi: 10.1080/10601325.2018.1453266.
  • Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Hancock REW, Wang R. 2013. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials, 34(24): 5969–5977. doi: 10.1016/j.biomaterials.2013.04.03.
  • Kelson AB, Carnevali M, Truon-Le V. 2013. Gallium-based anti- infectives: Targeting microbial iron-uptake mechanisms. Current opinion in Pharmacology, 13(5): 707-716. doi: 10.1016/j.coph.2013.07.001.
  • Kim WH, Lee SB, Oh KT, Moon SK, Kim KM, Kim KN. 2008. The release behavior of CHX from polymer-coated titanium surfaces. Surface and Interface Analysis, 40(34): 202-204. doi: 10.1002/sia.2809.
  • Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH. 2008. Antifouling enzymes and the biochemistry of marine settlement. Biotechnology Advances, 26(5): 471–481. doi: 10.1016/j.biotechadv.2008.05.005.
  • Kristinsson KG, Jansen B, Treitz U, Schumacher-Perdreau F, Peters G, Pulverer G. 1991. Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone. Journal of Biomaterials Applications, 5(3): 173–184. doi: 10.1177/088532829100500303.
  • Krumm C, Tiller JC. 2014. Kontaktaktiv oder durch biozide. Nachrichten aus der Chemie, 62(10): 984-987. doi: 10.1515/nachrchem.2014.62.10.984.
  • Lambert PA, Hammond SM. 1973. Potassium fluxes. First indications of membrane damage in micro-organisms. Biochemical and Biophysical Research Communications, 54(2): 796–799. doi: 10.1016/0006-291X(73)91494-0.
  • Landini P, Antoniani D, Burgess JG, Nijland R. 2010. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Applied Microbiology and Biotechnology, 86: 813–823. doi: 10.1007/s00253-010-2468- 8.
  • Lange RP, Locher HH, Wyss PC, Then RL. 2007. The targets of currently used antibacterial agents: Lessons for drug discovery. Current Pharmaceutical Design, 13(30): 3140– 3154. doi: 10.2174/138161207782110408.
  • Lemire JA, harrison JJ, Turner RJ. 2013. Antimicrobial activity of metals: Mechanisms, molecular targets, and applications. Nature Reviews Microbiology, 11: 371–384. doi: 10.1038/nrmicro3028.
  • Leong HJ, Oh SG. 2018. Preparation of antibacterial TiO2 particles by hybridization with azelaic acid for applications in cosmetics. Journal of Industrial and Engineering Chemistry, 66: 242-247. doi: 10.1016/j.jiec.2018.05.035.
  • Leroy C, Delbarre-Ladrat C, Ghillebaert F, Compere C, Combes D. 2008. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling, 24(1): 11– 22. doi: 10.1080/08927010701784912.
  • Lewis K, Klibanov AM. 2005. Surpassing nature: rational design of sterile-surface materials. Trends in Biotechnology, 23(7): 343–348. doi: 10.1016/j.tibtech.2005.05.004.
  • Lomate GB, Dandi B, Mishra S. 2018. Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda. Food Packaging and Shelf Life, 16: 211-219.
  • Maillard JY. 2002. Bacterial target sites for biocide action. Journal of applied microbiology, 92: 16-27.
  • Makvandi P, Ghaemy M, Mohseni M. 2016. Synthesis and characterization of photo-curable bis-quaternary ammonium dimethacrylate with antimicrobial activity for dental restoration materials. European Polymer Journal, 74: 81–90. doi: 10.1016/j.eurpolymj.2015.11.011.
  • Makvandi P, Esposito Corcione C, Paladini F, Gallo AL, Montagna F, Jamaledin R, Pollini M, Maffezzoli A. 2017. Antimicrobial modified hydroxyapatite composite dental bite by stereolithography. Polymers for Advanced Technologies, 29(1): 364–371. doi:10.1002/pat.4123.
  • Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A. 2018. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dental Materials, 34(6): 851–867. doi: 10.1016/j.dental.2018. 03.014.
  • Makvandi P, Wang C, Zare EN, Borzacchiello A, Niu L, Tay FR. 2020. Metal‐based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Advanced Functional Materials, 30(2): 1910021. doi:10.1002/adfm. 201910021
  • Melo LD, Palombo RR, Petri DFS, Bruns M, Pereira EMA, Carmona-Ribeiro AM. 2011. Structure-activity relationship for quaternary ammonium compounds hybridized with poly (methyl methacrylate). ACS Applied Materials & Interfaces, 3(6): 1933–1939. doi: 10.1021/am200150t.
  • Melo LD, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, Sillankorva S. 2016. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Frontiers in Microbiology, 7: 1024. doi: 10.3389/fmicb.2016.01024.
  • Michl TD, Coad BR, Doran M, Osiecki M, Kafshgari MH, Voelcker NH, Hüsler A, Vasilev K, Griesser HJ. 2015. Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects. Chemical Communications, 51(32): 7058–7060. doi:10.1039/c5cc0 1722j.
  • Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. 2011. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Research in Microbiology, 162: 542-549. doi: 10.1016/j.resmic.2011.04.009.
  • Mongillo JF. 2007. Nanotechnology 101. Westport: Greenwood Publishing Group. ISBN-13: 978-0-313-33880-9.
  • Moorcroft SC, Jayne DG, Evans SD, Ong ZY. 2018. Stimuli- responsive release of antimicrobials using hybrid inorganic nanoparticle-associated drug-delivery systems.
  • Macromolecolar Bioscience, 18(12): 1800207. doi: 10.1002/ mabi.201800207.
  • Moretro T, Hoiby-Pettersen GS, Habimana O, Heir E, Langsrud S. 2011. Assessment of the antibacterial activity of a triclosan-containing cutting board. International Journal of Food Microbiology, 146(2): 157-62. doi: 10.1016/j.ijfoodmicro.2011.02.017.
  • Moustafa MT. 2017. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Science, 31(2): 164–176. doi: 10.1016/j.wsj.2017.11.001.
  • Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. 2019. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Frontiers in Microbiology, 10: 539. doi: 10.3389/fmicb.2019.00539.
  • Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. 2007. Permanent, non-leaching antibacterial surfaces-2: How high- density cationic surfaces kill bacterial cells. Biomaterials, 28(2): 4870-4879. doi: 10.1016/j.biomaterials.2007.06.012.
  • Muszanska AK, Rochford ET, Gruszka A, Bastian AA, Busscher HJ, Norde W, van der Mei HC, Herrmann A. 2014. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules, 15(6): 2019-2026. doi: 10.1021/bm500168s.
  • Nablo BJ, Schoenfisch MH. 2003. Antibacterial properties of nitric oxide-releasing sol-gels. Journal of Biomedical Materials Research Part A, 67A(4): 1276–1283. doi: 10.1002/jbm.a.20030.
  • Nadtochenko V, Denisov N, Sarkisov O, Gumy D, Pulgarin C, Kiwi J. 2006. Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 181(2-3): 401–407. doi: 10.1016/j.jphotochem.
  • Nagaraja A, Puttaiahgowda YM, Kulal A, Parambil AM, Varadavenkatesan T. 2019. Synthesis, characterization, and fabrication of hydrophilic antimicrobial polymer thin film coatings. Macromolecular Research, 27(3): 301–309. doi: 10.1007/s13233-019-7040-5.
  • Nagaraja A, Jalageri MD, Puttaiahgowda YM. 2020. A thirst for polymeric antimicrobial surfaces/coatings for diverse applications. In: Snigdha S, Thomas S, Radhakrishnan E, Kalarikkal N (editors). Engineered Antimicrobial Surfaces. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. doi: 10.1007/978-981-15-4630-3_2.
  • Nair MB, Kretlow JD, Mikos AG, Kasper FK. 2011. Infection and tissue engineering in segmental bone defects—a mini review. Current Opinion in Biotechnology, 22(5): 721–725. doi: 10.1016/j.copbio.2011.02.005.
  • Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK. 2018. Enhanced antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. International Journal of Biological Macromolecules, 109: 1219–1231. doi: 10.1016/j.ijbiomac.2017.11.119.
  • Okano A, Isley NA, Boger DL. 2017. Peripheral modifications of [ψ [CH2NH] Tpg4] vancomycin with added synergistic mechanisms of action provides durable and potent antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 114(26): E5052–E5061. doi: 10.1073/pnas.1704125114.
  • Page K, Wilson M, Parkin IP. 2009. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Material Chemistry, 19: 3819-3831. doi: https://doi.org/10.1039/B818698G.
  • Parham S, Wicaksono DH, Bagherbaigi S, Lee SL, Nur H. 2016. Antimicrobial treatment of different metal oxide nanoparticles: A critical review. Journal of Chinese Chemical Society, 63(4): 385–393. doi: 10.1002/jccs.201500446.
  • Patel A, Prajapati P, Boghra R. 2011. Overview on application of nanoparticles in cosmetics. Asian Journal of Pharmaceutical Sciences and Clinical Research, 1(2): 40–55.
  • Pereira EM, Kosaka PM, Rosa H, Vieira DB, Kawano Y, Petri DF, Carmona-Ribeiro AM. 2008. Hybrid materials from intermolecular associations between cationic lipid and polymers. The Journal of Physical Chemistry B, 112(31): 9301–9310. doi: 10.1021/jp801297t.
  • Pradeep T, Anshup. 2009. Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 517(24): 6441–6478. doi: 10.1016/j.tsf.2009.03.195.
  • Rahimdokht M, Pajootan E, Ranjbar-Mohammadi M. 2018. Titania/Gum Tragacanth nanohydrogel for methylene blue dye removal from textile wastewater using response surface methodology. Polymer International, 68(1): 134-140. doi:10.1002/pi.5706.
  • Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, dos Santos CA. 2017. Broadening the spectrum of small molecule antibacterials by metallic nanoparticles to overcome microbial resistance. International Journal of Pharmaceutics, 532(1): 139–148. doi: 10.1016/j.ijpharm.2017.08.127.
  • Ramsden J. 2011. Nanotechnology: An introduction. Elsevier. ISBN: 978-0-08-096447-8.
  • Rapacz-Kmita A, Bucko M, Stodolak-Zych E, Mikolajczyk M, Dudek P, Trybus M. 2017. Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Material Science and Engineering: C, 70(1): 471–478. doi: 10.1016/j.msec.2016. 09.031.
  • Rawlinson S, Ciric L, Cloutman-Green E. 2019. How to carry out microbiological sampling of healthcare environment surfaces? A review of current evidence. Journal of Hospital Infection, 103(4): 363-374. doi: 10.1016/j.jhin.2019.07.015.
  • Reardon S. 2014. Phage therapy gets revitalized. Nature, 510: 15- 16. doi: 10.1038/510015a.
  • Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. 2019. Nitric oxide-releasing polymeric materials for antimicrobial applications: A review. Antioxidants, 8(11): 556. doi: 10.3390/antiox8110556.
  • Roosjen A, Van der Mei HC, Busscher HJ, Norde W. 2004. Microbial adhesion to poly (ethyle oxide) brushes: Influence of polymer chain length and temperature. Langmuir, 20(25): 10949-10955. doi: 10.1021/la048469l
  • Rtimi S, Baghriche O, Pulgarin C, Lavanchy JC, Kiwi J. 2013. Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability. Surface and Coatings Technology, 232: 804– 813. doi: 10.1016/j.surfcoat.2013.06.102.
  • Saka E, Gülel GT. 2015. Gıda Endüstrisinde Nanoteknoloji Uygulamaları. Etlik Veteriner Mikrobiyoloji Dergisi, 26(2): 52-57. doi: 10.35864/evmd.513387.
  • Samani S, Hossainalipour SM, Tamizifar M, Rezale HR. 2012. In vitro antibacterial evaluation of sol-gel derived Zn-, Ag-, and (Zn+Ag)-doped hydroxyapatite coatings against methicillin- resistant Staphyllococcus aureus. Society for Biomaterials, 101A(1): 222-230. doi: 10.1002/jbm.a.34322.
  • Sambhy V, MacBride MM, Peterson BR, Sen A. 2006. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. Journal of the American Chemical Society, 128(30): 9798–9808. doi: 10.1021/ja061442z.
  • Sekhavat Pour Z, Makvandi P, Ghaemy M. 2015. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly (vinyl alcohol). International Journal of Biological Macromolecules, 80: 596–604. doi: 10.1016/j.ijbiomac.2015.07.008.
  • Serrano C, García-Fernandez L, Fernandez-Blazquez JP, Barbeck M, Ghanaati S, Unger R, Kirkpatrick J, Arzt E, Funk L, Turon P, del Campo A. 2015. Nanostructured medical sutures with antibacterial properties. Biomaterials, 52: 291 – 300. doi: 10.1016/j.biomaterials.2015.02.039.
  • Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z. 2014. A. tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo- photothermal therapy and X-ray imaging. Biomaterials, 35(22): 5847–5861. doi: 10.1016/j.biomaterials.2014.03.042.
  • Sonia S, Linda Jeeva Kumari H, Ruckmani K, Sivakumar M. 2017. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application. Materials Science and Engineering: C, 79: 581– 589. doi: 10.1016/j.msec.2017.05.059.
  • Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z. 2020. Engineering and application perspectives on designing an antimicrobial surface. ACS applied materials & interfaces, 12(19): 21330- 21341.
  • Suzuki Y, Tanihara M, Nishimura Y, Suzuki K, kakimaru Y, Shimizu Y. 1998. A new drug delivery system with controlled release of antibiotic only in the presence of infection. Journal of Biomedical Materials Research, 42(1): 112–116. doi: 10.1002/(SICI)1097-4636(199810)42:1<112:AID- JBM14>3.0.CO;2-N.
  • Tang W, Li L, Zeng X. 2015. A glucose biosensor based on the synergistic action of nanometer-sized TiO2 and polyaniline. Talanta, 131: 417–423. doi: 10.1016/j.talanta.2014.08.019.
  • Tanihara M, Suzuki Y, Nishimura Y, Suzuki K, Kakimaru Y. 1998. Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides, 19(3): 421– 425. doi: 10.1016/S0196-9781(97)00420-8.
  • Tanihara M, Suzuki Y, Nishimura, Suzuki K, kakimaru Y, Fukunishi Y. 1999. A novel microbial infection-responsive drug release system. Journal of Pharmaceutical Sciences, 88(5): 510–514. doi: 10.1021/js980418j.
  • Tasso M, Pettitt ME, Cordeiro AL, callow ME, Callow JA, Werner C. 2009. Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25: 505–516. doi: 10.1080/08927010902930363.
  • Tawil N, Sacher E, Mandeville R, Meunier M. 2013. Strategies for the immobilization of bacteriophages on gold surfaces monitored by surface plasmon resonance and surface morphology. The Journal of Physical Chemistry C, 117(13): 6686-6691. doi: 10.1021/jp400565m.
  • Tiller JC, Liao C, Lewis K, Klibanov AM. 2001. Designing surfaces that kill bacteria on contact. Proceedings of the National Academy of Sciences of the United States of America, 98(11): 5981–5985. doi: 10.1073/pnas.111143098.
  • Tiller JC. 2008. Coatings for prevention or deactivation of biological contamination. In: Kohli R, Mittal KL (editors). Developments in surface contamination and cleaning. William Andrew, Norwich, NY. ISBN 978-0-8155-1555-5.
  • Tiller JC. 2010. Antimicrobial Surfaces. Advances in Polymer Science, 240: 193–217. doi:10.1007/12_2010_101.
  • Thomas JG, Litton I, Rinde H. 2005. Economic impact of biofilms on treatment costs. In: Pace JL, Rupp ME, Finch RG (editors). Biofilms, infection, and antimicrobial therapy. CRC Press. ISBN 9780429136184.
  • Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ. 2019. Self- assembled carbohydrate polymers for food applications: A review. Comprehensive Reviews in Food Science and Food Safety, 18(6): 2009–2024. doi: 10.1111/1541-4337.12499.
  • Van derWesten R, Sjollema J, Molenaar R, Sharma PK, Van der Mei HC, Busscher HJ. 2018. Floating and tether-coupled adhesion of bacteria to hydrophobic and hydrophilic surfaces. Langmuir, 34(17):4937–4944. doi: 10.1021/acs.langmuir. 7b04331.
  • Yazıcı E. 2009. Ultrasonik sprey piroliz tekniğiyle küresel gümüş nano-parçacıklarının üretimi. Yüksek Lisans Tezi. Fen bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye.
  • Walsh SE, Maillard JY, Simons C, Russell AD. 1999. Studies on the mechanisms of the antibacterial action of orthophthalaldehyde. Journal of Applied Microbiology, 87(5): 702–710. doi: 10.1046/j.1365-2672.1999.00913.x.
  • Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K. 1999. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 351(1-2): 260–263. doi: 10.1016/S0040- 6090(99)00205-9.
  • WHO, 2017. World Health Organization (WHO) publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/ru/news-room/detail/27-02-2017-who- publishes-list-of-bacteria-for-which-new-antibiotics-are- urgently-needed. [Erişim tarihi: 18.07.2021]
  • Wilson JW, Ott CM, Honer Zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, Mcclelland M, Wilson JW, Ott CM, Ho K, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, Mccracken J, Allen P, Hammond T, Vogel J, Nelson R, Pierson DL, Nickerson CA. 2007. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences of the United States of America, 104(41): 16299–16304. doi: 10.1073/pnas.0707155104.
  • Xiu AM, Ma J, Alvarez PJJ. 2011. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmental Science & Technology, 45: 9003–9008. doi: dx.doi.org/ 10.1021/es201918f.
  • Yuan Y, Hays MP, Hardwidge PR, Kim J. 2017. Surface characteristics influencing bacterial adhesion to polymeric substrates. Royal Society of Chemistry, 7: 14254-14261. doi: 10.1039/C7RA01571B.
  • Zare EN, Motahari A, Sillanpää M. 2018. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environmental Research, 162: 173-195. doi: 10.1016/j.envres.2017.12.025.
  • Zeiger HJ, Henrich VE, Dresselhaus G. 1977. Interaction of O2 and H2O with surface defects on TIO2 and SRTIO3. Bulletin of the American Physical Society, 22: 419–419
  • Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu YW, Tang Z, Xu FJ. 2018. Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromoles, 19(7): 2805–2811. doi: 10.1021/acs.biomac.8b00399.
  • Zhang X, Wang L, Levanen E. 2013. Superhydrophobic surfaces for the reduction of bacterial adhesion. Royal Society of Chemistry, 3: 12003-12020. doi: 10.1039/C3RA40497H.
  • Zhao B, Brittain WJ. 2000. Polymeric brushes: Surface- immobilized macromolecules. Progress in Polymer Science, 25(5): 677-710. doi: 10.1016/S0079-6700(00)00012-5.
  • Zhao Y, Ibrahim M, Kan W, Wu G, Wang C, Zheng Y, Yeung KWK, Chu PK. 2014. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma- modified biodegradable magnesium alloys. Acta Biomaterialia, 10(1): 544–556. doi: 10.1016/j.actbio.2013.10.012.
  • Zhen X, Lundborg CS, Sun X, Hu X, Dong H. 2019. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrobial Resistance & Infection Control, 8(1): 1–23. doi: 10.1186/s13756-019-0590-7.
  • Zhou B, Li Y, Deng H, Hu Y, Li B. 2014. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids and Surfaces B: Biointerfaces, 116: 432–438. doi: 10.1016/j.colsurfb.2014.01.016.
  • Zimmermann R, Pfuch A, Horn K, Heft A, Ro M, Linke R, Schnabelrauch M. 2011. An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (ccvd) in an economic way. Plasma Process and Polymers, 8(4): 295–304. doi: 10.1002/ppap.201000113.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: 12
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

TR 22 Bölgesi’nde Zeytin ve Zeytinyağı Pazarlama Organizasyonu ve Pazarlama Etkinliklerinin Değerlendirilmesi

Halil Kızılaslan, Serkan Birsin

Ruminantlarda Metan Salınımı, Azaltma Stratejileri ve Ölçüm Yöntemleri

Özlem Boran, Uğur Serbester

Farklı Protein Düzeylerinde Yemlerle Beslenen Şabut Balığı (Tor grypus) Yavrularının Büyüme Performansları

Suat Dikel, lgın Özşahinoğlu, İbrahim Demirkale, Mustafa Öz

Sürülebilir Kabak Çekirdeği Kreması Üretimi, Besinsel, Tekstürel ve Duyusal Özelliklerinin Belirlenmesi

Rümeysa Hacer Güneş, Muhammed Furkan Yılmaz, Ezgi Demir Özer

Tokat İli Hayvansal Atık Biyogaz Potansiyelinin Belirlenmesi

Gazanfer Ergüneş, Burcu Aksüt, Samet Kaya Dursun

Monokromatik LED Aydınlatmanın Etlik Piliçlerin Performansı, Göğüs Eti Kalitesi, Tibia Kemiği Özellikleri ve İmmunoglobulin G Düzeyine Etkisi

Mustafa Akşit, Tolga Bingöl

Bıldırcın Rasyonlarına Sodyum Format İlavesinin Performans, Yumurta Kalite ve Serum Parametreleri Üzerine Etkisi

Osman Olgun, Esra Tuğçe Gül, Seyit Ahmet Gökmen

Ayçiçek Küspesinden Elde Edilen Protein Hidrolizatlarının Anjiyotensin Dönüştürücü Enzim ve Dipeptidil Peptidaz–IV İnhibisyon Aktiviteleri

Şebnem Şimşek

Özlüce Baraj Gölü’nde Yaşayan Üç Luciobarbus Türünün (Luciobarbus barbulus, Luciobarbus esocinus ve Luciobarbus xanthopterus) Metrik ve Meristik Özelliklerinin Belirlenmesi

Mücahit Eroğlu, Mustafa Düşükcan, Mehmet Zülfü Çoban

Bafra Balık Gölleri’nden Tatlı Gölü ve Gıcı Gölü’ndeki Tatlısu Istakozu (Astacus leptodactylus Eschscholtz, 1823)’nun Bazı Popülasyon Parametrelerinin Belirlenmesi

Gülşen Uzun Gören, Sedat Karayücel