Estimation of Kostiakov infiltration parameters using initial soil moisture

Kostiakov eşitliği, farklı tarla koşulları için geçerli olmamasına rağmen uzun bir sure çizi infiltrasyonunutahmin etmede kullanılmıştır. Bu nedenle Kostiakow infiltrasyon parametleri (k ve a), bu çalışmada başlıngıç toprak nemi içeriği ve sulama uygulamalarının bir fonksiyonu ortaya konulmuştur. Tarla denemeleri iki tip uygulamayı karşılaştırmıştır. Birincisi, ilk sulama uygulaması için 56 bölgede infiltrasyon un ölçülmesidir, ikinci ölçümler ise aynı alanlarda birbirini izleyen 5 sulama uygulaması süresince çizilerde yapılmıştır. İlfiltrasyon ölçümleri bloklu çizi ilfiltrometreleri ile yapılmıştır. Sonuçlar, ortalama k değerinin 272.84-733.991 $mlm^{-1} min^{-a}$ ve a değerinin 0.614-0.815 arasında değiştiğini göstermiştir, a parametresi ilk toprak nem kapsamının non-linear bir fonksiyonu ve /c'nın logartmik fonksiyonu olarak tanımlanmıştır. K parametresi ilk toprak neminin ve sulama uygulamalarının non-linear bir fonksiyonu olarak bulunmuştur. 5 sulama uygulamasındaki kümülatif infiltrasyon diğerleri ile bağlantılıdır. Sonuçlar her sulama uygulamasındaki kümülatif infiltrasyon daha önceki sulama uygulamalarından tahmin edilebileceğini göstermektedir.

Başlangıç toprak nemini kullanarak Kostiakov infiltrasyon parametrelerinin tahmini

The Kostiakov equation was extensively used to estimate furrow infiltration but it is unadjusted for different field conditions. The Kostiakov infiltration parameters (k and a) were therefore developed as a function of initial soil moisture content and irrigation events in current study. The field experiments comprised two types trials. The first was infiltration measuring at 56 sites over the field for the first irrigation event. The second measurements were at the furrows along the same field for five successive irrigation events. Infiltration measurements were taken by blocked furrow infiltrometers. Results showed that the averages of k ranged from 272.84 to 733.991 $mlm^{-1} min^{-a}$ and for a were from 0.614 to 0.815. The parameter a was described as a non­linear function of initial soil moisture content and as a logarithmic function of k. The parameter k was developed as a non-linear function of initial soil moisture and irrigation events. Cumulative infiltration from five successive irrigation events were correlated to each others and according to the results cumulative infiltration from each irrigation event can be predicted from the other previous irrigation events.

___

  • Blaier, A. W. and E. T. Smerdon. 1988. Infiltration from irrigation advance data, ILExperimental J. Irrig. and Drain.Engrg. 114:18-30.
  • Cahoon, J. 1998. Kostiakov infiltration parameters from kinematic wave model. J. Irrig. and Drain. Engrg. 124:127-130.
  • Childs, J. I., W. W. Wallender and J. W. Hopmans.1993. Spatial and seasonal variation of furrow irrigation. J. Irrig. Drain. Eng.119: 74-90.
  • Christiansen, J. E., A. A. Bishop, F. W. Jr. Kiefer and Y. Fok. 1966. Evaluation intake rate constants as related to advance of water in surface irrigation. Trans. ASAE 9:671-674.
  • Elliott, R. L, W. R. Walker and G. V. Skogerboe.1983. Infiltration parameters from furrow irrigation advance data.Trans. ASAE 26:1726-1731.
  • Fonteh, M .F. and T. Podmore. 1993. A physically based infiltration model for furrow irrigation. Agric. Water Manage. 23: 271-284.
  • Gardner, W. H. 1976. Water content. In: Methods of soil analysis. Part 1: Physical and mineralogical properties. 4th ed., (Ed. C.A. Black, D.D. Evans, LE.
  • Ensminger.J.L. White.F.E. Clark, and R.C. Dinauer). Madison, Wl: Agronomy Society 82-127.
  • Jafarzadeh, A. A., R. Kasraei and M. R. Neyshabori. 1993. Detailed study of farms soils. Tabriz University. Tabriz (in Farsi).
  • Jobling, G. A. and A. K. Turner. 1973Physical model study of border irrigation. J. Irrig. Drain. Eng. 99: 493- 510.
  • Kohler, H. 2002. Statistics for Business and Economics. Thomson Learning Inc. 1226pp.
  • Kostiakov, A.V. 1932. On the dynamics of the coefficient of water percolation in soils and on the necessity for studying it from a dynamics point of view for purposes of amelioration. Transactions of the Sixth Commission of International Society of Soil Science, part A, pp: 17-21.
  • Nasseri, A., M. R. Neyshabori, A. Fakheri fard, M. Mogaddam and A. H. Nazemi. 2004. Field-measured furrow infiltration functions. Turkish journal of Agriculture and Forestry 28: 93-101.
  • Norum, D. I. and D. M. Gray. 1970. Infiltration equations from rate-of-advance.J. Irrig. and Drain.Div. 96:111-119.
  • Oyonarte, N. A., L. Mateos and M. J. Palomo. 2002. Infiltration variability in furrow irrigation. J. Irrig. Drain. Eng. 128:26-33.
  • Philip, J. R. 1957.The theory of infiltration: 2.The profile at infinity. Soil83.Sci : 43 448.
  • Smerdon, E. T., A. W. Blair and D. L. Reddell. 1988. Infiltration from irrigation and advance data.l.Theory.J. ^ Irrig. and Drain. Engrg.114:4-17.
  • Walker, W. R. and G. V. Skogerboe. 1987. Surface irrigation: Theory and Practice. Prentice-Hall, Inc., New Jersey, 386 pp.
  • Wallender, W. W. and F. Sirjni. 1988. Stochastic infiltration from advance in furrows. ASAE paper No.88-2019, ASAE, ST. Joseph, Mich.