Farklı elektrik direnç kaynağı parametrelerinin mukavemet üzerine etkilerinin incelenmesi

Bu çalışmada otomotiv endüstrisinde kullanılan 5000 serisi alüminyum alaşımlarından olan Al 5754- H111 malzemesi elektrik direnç kaynak yöntemi ile farklı kaynak akımı, kaynak süresi ve sıkıştırma yükü ile birleştirilmişlerdir. Kaynak işlemi uygulanmış numunelerin mekanik özelliklerini belirlemek amacıyla kaynaklı bağlantılara çekme deneyi yapılmıştır. Test sonuçlarına göre elde edilen çekme mukavemeti ve çekme uzaması değerlerindeki farklılıklar, kaynak parametrelerindeki değişimin kaynağın mekanik özellikleri üzerinde önemli etkiye sahip olduğunu göstermiştir.

Investigation of the effects of different electrical resistance welding parameters on strength

In this study, Al 5754-H111 material from 5000 series aluminum alloys used in the automotive industry were combined with different welding current, welding time and compression load by electrical resistance welding method. Tensile tests were performed to determine the mechanical properties of welded specimens. The differences in tensile strength and tensile elongation values obtained from the test results have shown that the variation in weld parameters has a significant effect on the mechanical properties of the weld.

___

  • E. Doruk, M. Pakdil, G.Çam, I. Durgun, U. C. Kumru,“Otomotiv sektöründe direnç nokta kaynağı Tofaş uygulamaları,” Kaynak Teknolojisi IX. Ulusal Kongre ve Sergisi, pp. 29–38, 2015.
  • N. Ferudun, “Akım ve basıncın direnç kaynak kalitesine etkisi,” Metalurji Dergisi, vol. 175, pp. 32–34, 2015
  • YB. Demir, E. İncekar, Ö. Dincel and M. Elitaş, “İleri Dayanımlı Çeliklerde Nokta Direnç Kaynağı Etkilerinin İncelenmesi,” El-Cezerî Journal of Science and Engineering, vol. 4, no. 1, pp. 92–100, 2017.
  • M. Sun, S. T. Niknejad, G. Zhang, M. K. Lee, L. Wu and Y. Zhou, “Microstructure and mechanical properties of resistance spot welded AZ31/AA5754 using a nickel interlayer,” Materials and Design, vol. 87, pp. 905–913, 2015.
  • N. Chen, H.-P.Wang, B. E. Carlson, D. R. Sigler and M. Wang, “Fracture mechanisms of Al/steel resistance spot welds in lap shear test,” Journal of Materials Processing Technology, vol. 243, pp. 347–354, 2017.
  • J. Chen, X. Yuan, Z. Hu, C. Sun, Y. Zhang and Y. Zhang, “Microstructure and mechanical properties of resistance-spotwelded joints for A5052 aluminum alloy and DP 600 steel,” Materials Characterization, vol. 120, pp. 45–52, 2016.
  • D. Sun, Y. Zhang, Y. Liu, X. Gu and H. Li, “Microstructures and mechanical properties of resistance spot welded joints of 16Mn steel and 6063-T6 aluminum alloy with different electrodes,” Materials and Design, vol. 109, pp. 596–608, 2016.
  • Y. Kaya and N. Kahraman, “Titanyum sacların nokta direnç kaynağı ile birleştirilmesinde kaynak parametrelerinin çekirdek oluşumuna etkisi,” Journal of Polytechnic, vol. 14, no. 4, pp. 263–270, 2011.
  • S. Aslanlar, A. Ogur, U. Ozsarac and E. Ilhan, “Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding,” Materials and Design, vol. 29, pp. 1427–1431, 2008.
  • D. Özyürek, “An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel,” Materials and Design, vol. 29, pp. 597–603, 2008.
  • D.Q. Sun, B. Lang, D.X. Sun and J.B. Li, “Microstructures and mechanical properties of resistance spot welded magnesium alloy joints,” Materials Science and Engineering A, vol. 460–461, pp. 494–498, 2007.
  • M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi and M. Goodarzi, “Effect of weld nugget size on overload failure mode of resistance spot welds,” Science and Technology of Welding and Joining, vol. 12, no. 3, pp. 217–225, 2007.
  • R.S. Florea, K.N. Solanki, D.J. Bammann, J.C. Baird, J.B. Jordon and M.P. Castanier, “Resistance spot welding of 6061-T6 aluminum: Failure loads and deformation,” Materials and Design, vol. 34, pp. 624– 630, 2012.
  • S. Hassanifard and M. Zehsaz, “The effects of residual stresses on the fatigue life of 5083-O aluminum alloy spot welded joints,” Procedia Engineering, vol. 2, pp. 1077–1085, 2010.
  • A.M. Pereira, J.M. Ferreira, A. Loureiro, J.D.M. Costa and P.J. Bártolo, “Effect of process parameters on the strength of resistance spot welds in 6082-T6 aluminium alloy,” Materials and Design, vol. 231, pp. 2454–2463, 2010.
  • S. Wu, B. Ghaffari, E. Hetrick, M. Li, Z. Jia and Q. Liu, “Microstructure characterization and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy,” Trans. Nonferrous Met. Soc. China, vol. 24, pp. 3879–3885, 2014.
  • L. Han, M. Thornton, D. Li and M. Shergold, “Effect of governing metal thickness and stack orientation on weld quality and mechanical behaviour of resistance spot welding of AA5754 aluminium,” Materials and Design, vol. 32, pp. 2107–2114, 2011.
  • J. Senkara and H. Zhang, “Cracking in spot welding aluminum alloy AA5754,” Welding Journal, vol. 79, pp. 194–201, 2000.
  • X. Long and S. K. Khanna, “Residual stresses in spot welded new generation aluminium alloys Part B – finite element simulation of residual stresses in a spot weld in 5754 aluminium alloy,” Science and Technology of Welding and Joining, vol. 10, no.1, pp. 88–94, 2005.
  • S. A. Şafak, “Uçak endüstrisinde kullanılan alüminyum alaşımlarının elektrik direnç nokta kaynak yöntemi ile birleştirilmesi ve mekanik özelliklerinin incelenmesi,” Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 2011.
  • H. Zhang, X. Qiu, F. Xing, J. Bai and J. Chen, “Failure analysis of dissimilar thickness resistance spot welded joints in dual-phase steels during tensile shear test,” Materials and Design, vol. 55, pp. 366– 372, 2014.
  • O. Yıldırım, “Otomotiv Endüstrisinde Kullanılan Nokta Direnç Kaynak Uygulamalarında İşlem Parametrelerinin Etkilerinin İncelenmesi,” Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, 2010.