Creative design exploration by parametric generative systems in architecture

Bu yazı, üretken bir araç olarak parametrik tasarım sistemlerini tartışmaktadır. Algoritmik altyapıları nedeniyle parametrik sistemler, tasarım geometrisi üzerinde daha etkin sayısal denetim sağlarlar. Değişen tasarım ölçütlerine yanı verebilme özellikleri, parametrik modellerin karmaşık ve dinamik tasarım gereksinimlerini karşılayabilmelerine olanak sağlar. Tasarım sürecinde formun parametrik denetimi, özellikle performansa dayalı tasarımda performans değerlendirmesinin tasarım sentezinde kullanılmasını sağlayabilmesi özelliği ile öne çıkar. Buna rağmen, sayısal bir metot yerine yeni ortaya çıkmakta olan mimari bir stil olarak görülmeleri, parametrik sistemlerin gerçek potansiyelini gölgelemektedir. Ayrıca, parametrik modeller, temsil esnekliği ve tasarım karmaşıklığı konularındaki sınırlılıkları nedeniyle, etkili tasarım araştırmasını aksatabilirler. Bu bağlamda, parametrik sistemlerin potansiyel ve eksiklikleri konusunda eleştirel bir farkındalık oluşturmak, tasarımda verimli olarak kullanılabilmeleri açısından önemlidir.

Mimarlıkta parametrik üretken sistemler ile yaratıcı tasarım araştırmaları

This paper discusses parametric design systems as a generative tool in architectural design. Parametric tools are algorithmically based, and therefore offer increased computational control over design geometry during design activity. Their adaptability and responsiveness to changing design criteria and requirements make parametric models especially useful for design exploration in complex and dynamic design settings. In performance based design, parametric control of form is particularly valuable, such that they allow the integration of performance analysis into design synthesis. However, parametric systems are often incorrectly mistaken as an emerging architectural style rather than a computational method, ascribing it a false skin-deep character that overshadows its true merits. Moreover, parametric models come with a price, posing limitations regarding representational flexibility and design complexity, which hinder effective design exploration. A critical awareness on both the potentials and limitations of parametric systems is therefore critical in their effective use during design.

___

  • AHLQUIST, S., MENGES, A. (2011) Computational design thinking, in A. Menges and S. Ahlquist (eds.) Computational design thinking, Wiley.
  • AISH, R., WOODBURY, R. (2005) Multi-level interaction in parametric design, in A. Butz, B. Fisher, A. Krüger and P. Oliver (eds.) SmartGraphics, 5th Int. Symp., SG2005, Lecture Notes in Computer Science, Springer, Berlin.
  • AKIN, O. (1990) Computational Design Instruction: Towards a Pedagogy. Electronic Design Studio; 301-16.
  • AKIN, O. (2001) Variants in design cognition. Design knowing and learning: Cognition in design education, 105-124.
  • AKIN, O. (2004) Three Fundamental Tenets for Architectural Ethics, invited paper for the ACSA Teacher’s Conference. Cranbrook Academy of Art, MI.
  • ARIDA, S. (2004) Contextualizing Generative Design. MSc thesis, Massachusetts Institute of Technology, Boston, MA.
  • ARUP, S.O. , JENKINS, R. (1968) The evolution and design of the Concourse at the Sydney Opera House, Ove Arup and Partners.
  • BITTERMANN, M. (2009) Intelligent Design Objects (IDO): a cognitive approach for performance-based design, Delft University of Technology, Delft, Netherlands.
  • BITTERMANN, M.S. (2011) A Computational Design System with Cognitive Features Based on Multi-objective Evolutionary Search with Fuzzy Information Processing. Design Computing and Cognition’10; 505-24.
  • BURRY, J.R. (2007) Mindful Spaces: Computational Geometry and the Conceptual Spaces in which Designers Operate. International Journal of Architectural Computing, 5:4; 611-24.
  • BURRY, M. (2011) Scripting Cultures: Architectural Design and Programming. Wiley.
  • CHANG, S.K. (2003) Data structures and algorithms. World Scientific River Edge, London.
  • CORMEN, T.H. (2001) Introduction to algorithms. The MIT Press.
  • CROSS, N. (2001a) Design cognition: results from protocol and other empirical studies of design activity, in C. Eastman, W. Newstatter & M. McCracken (eds.) Design knowing and learning: cognition in design education, Elsevier: Oxford, UK.
  • CROSS, N. (2001b) Designerly ways of knowing: design discipline versus design science. Design issues, 17:3; 49-55.
  • DAVIS, D., BURRY, J., BURRY, M. (2011a) Untangling Parametric Schemata: Enhancing Collaboration through Modular Programming, in P. Leclercq, A. Heylighen & G. Martin (eds.) Proc. of CAAD Futures 2011: Designing Together, Liege, Belgium.
  • DAVIS, D., BURRY, M., BURRY, J. (2011b) The flexibility of logic programming, Proceedings of the 16th International Conference on CAADRIA. Newcastle, Australia.
  • DESIGNTOPRODUCTION (2011) Kilden Performing Arts Center, factsheet 2010/12 [WWW document]. URL www.designtoproduction.com ,accessed 20 December 2011.
  • EISENMAN, P. (1977) House VI, Progressive Architecture, 58; 57-67.
  • EL-KHALDI, M. (2007) Mapping Boundaries of Generative Systems for Design Synthesis. MSc thesis, Massachusetts Institute of Technology, Boston, MA.
  • GANDELSONAS, M. (1982) From structure to subject: the formation of an architectural language, Eisenman, P. House X, New York: Rizzoli.
  • GERBER, D.J. (2007) Parametric practices: models for design exploration in architecture, PhD thesis, Harvard University.
  • GERO, J. (1994) Preface, in J. Gero & E. Tyugu (eds.) Formal Design Methods for CAD. Elsevier: Amsterdam.
  • HANNA, R., BARBER, T. (2001) An inquiry into computers in design: attitudes before-attitudes after, Design Studies, 22:3; 255-81.
  • HAYS, K.M. (2000) Architecture theory since 1968, MIT Press: Cambridge, MA.
  • HENSEL, M., MENGES, A. ,WEINSTOCK, M. (2010) Emergent technologies and design: towards a biological paradigm for architecture, Routledge, UK.
  • HUDSON, R., SHEP HERD, P. & HINES, D. (2011) Aviva Stadium: A case study in integrated parametric design, International Journal of Architectural Computing, 9:2; 187-204.
  • JOS, T. (1989) The Model: Antoni Gaudi’s hanging model and its reconstruction, PhD thesis, Universität Stuttgart, Stuttgart.
  • KILIAN, A. (2006) Design exploration through bidirectional modeling of constraints, PhD thesis, Massachusetts Institute of Technology, Boston, MA.
  • KNIGHT, T. (2000) Shape grammars in education and practice: History and prospects [WWW document]. URL http://www.mit.edu/~tknight/ IJDC/, accessed 6 December 2011.
  • KNUTH, D.E. (1997) Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley, Reading, MA.
  • KOCATÜRK, T., MEDJDOUB, B. (2011) Distributed intelligence in design,Wiley Online Library.
  • KOLAREVIC, B. (2003) Digital Morphogenesis, in B. Kolarevic (ed.) Architecture in the digital age: design and manufacturing, Taylor & Francis.
  • LAWSON, B. (1980) How designers think, Architectural Press London.
  • LEACH, N. (2009) Digital Morphogenesis, Architectural Design, 79:1; 32-7. LIU, Y.C., CHAKRABARTI, A., BLIGH, T. (2003) Towards an ideal approach for concept generation, Design Studies, 24:4;341-55.
  • MEREDITH, M. (2008) Never enough, in M. Meredith, M. Sasaki (eds.) From control to design: Parametric/algorithmic architecture, Actar-D. MITCHELL, W.J. (1979) Computer-aided architectural design, Van Nostrand Reinhold.
  • MOUSSAVI, F. (2011) Parametric software is no substitute for parametric thinking., The Architectural Review, http://www.architectural-review. com/issues/october-2011/parametric-software-is-no-substitute-forparametric- thinking/8620000.article.
  • OXMAN, R. (2006) Theory and design in the first digital age, Design Studies, 27:3; 229-65.
  • OXMAN, R., OXMAN, R. (2010) New Structuralism: Design, Engineering and Architectural Technologies, Architectural Design, 80:4; 14-23.
  • SCHEURER, F. (2010) Materializing Complexity, in R. Oxman and R. Oxman (eds.) New Structuralism: Design, Engineering and Architectural Technologies, Architectural Design, 80:4.
  • SCHEURER, F. & STEHLING, H. (2011) Lost in Parameter Space? Architectural Design, 81:4; 70-79.
  • SCHUMACHER, P. (2009) Parametricism: A new global style for architecture and urban design. Architectural Design, 79:4; 14-23.
  • SHEA, K. (2004) Directed randomness, in N. Leach, D. Turnbull and C. Williams (eds.) Digital Tectonics, Wiley-Academy, UK.
  • SHEP HERD, P., HUDSON, R., HINES, D. (2011) Aviva Stadium: A parametric success. International Journal of Architectural Computing, 9:2, 167-186.
  • SIMON, H.A. (1969) The sciences of the artificial, MIT Press.
  • STEHLING, H., SCHEURER, F. (2011) Waved Wooden Wall, in G.R. and S.B. (eds.) Fabricate: Making Digital Architecture, Riverside Architectural Press.
  • TERZIDIS, K. (2011) Algorithmic form, in A. Menges and S. Ahlquist (eds.) Computational Design Thinking, Wiley.
  • TURRIN, M., von BUELOW, P. and STOUFFS, R. (2011) Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms, Advanced Engineering Informatics, 25-4; 656-75.
  • VANUCCI, M. (2008) Open systems: approaching novel parametric domains, in M. Meredith and M. Sasaki (eds.) From Control to Design: Parametric / Algorithmic Architecture, Actar.
  • VINCENT, J. (2009) Biomimetic Patterns in Architectural Design, Architectural Design, 79:6; 74-81.
  • WEINSTOCK, M. (2010) The architecture of emergence: the evolution of form in nature and civilisation, Wiley & Sons, Oxford.
  • WOODBURY, R. (2010) Elements of parametric design, Routledge, Oxford. YEOMANS, J. (1973) The Other Taj Mahal: What Happened to the Sydney Opera House, Longman Australia.