To Be and Then Not to Be: Our Myth from Science

Bilimsel efsanemizin cevap bekleyen üç nihai noktası vardır: (1a) Niçin bir şeyler her zaman vardır; (1b) Niçin bu kadar çok çeşitli sistem vardır; (2) Niçin sistemler ilk varoldukları gibi kalmazlar ve (3) Sistemler niye oldukları gibidir de başka türlü değildirler? Bu soruların cevapları (1) Kozmoloji ve fizikten (termodinamikten); (2) Bilgi teorisinin materyalist yorumundan; (3) Evrimsel biyolojiden gelir. Bu cevaplar şöyledir: (1a) Çünkü Big-Bang'i takip eden evrensel genişleme o kadar hızlıdır ki, evren dengede kalamamaktadır. Madde ve yerçekimi dengesizliğin yansımalarıdır (ve işaretleridir). Madde aşırı termodinamik dengesizliği gösteren sıkıştırılmış enerjinin dışa vurulmuş halidir. (1b) Çünkü evren enerji gradyantını savuşturmak için maddi düzenekleri kullanır. Dolayısıyla dengenin sağlanması amacı ile daha değişik şekillerde enerji gradyantmın savuşturulmasını sağlayacak çok çeşitli düzenek ve sistemlere ihtiyaç vardır. (2) Çünkü dinamik maddî sistemlerde biriken bilgi, bilginin aşırı yüklenmesine ve kararsızlığa yol açar. (3) Çünkü sadece farklılıkları uyuşturan ve ortak bağlantılar oluşturan (1b)de bahsedilen düzenekler, nesnelerin engellenemez parçalanma eğilimleri karşısında ısrar edecek kadar kararlıdırlar.

Olmak ve Sonra da Olmamak: Bilimsel Efsanemiz

Our myth from science has three prongs — to provide answers to: (1a), why is there anything at all? (1b), Why are there so many kinds of systems?; (2), Why do systems not last once they exist?, and (3), Why are systems just the way they are and not otherwise? The answers to (1) come from cosmology and physics (thermodynamics), the answer to (2) comes from a materialist interpretation of information theory, while the answer to (3) comes from evolutionary biology. These answers are: (1a) because the universal expansion following the Big Bang has been accelerating so fast that the universe could not remain in equilibrium. "Matter and gravitation are aspects (and signs) of disequilibrium. Matter is embodied energy, a condensed form of energy signaling extreme thermodynamic disequilibrium; (1b) because the universe uses material configurations to dissipate energy gradients; the more different configurations, and systems, there are, the more different kinds of gradients can be dissipated in the interest of equilibration. (2) because information accumulates in all dynamic material systems, leading ultimately to information overload, leading in turn to instability. (3)because only configurations that conform to others, or relate mutually, are stable enough to persist in the face of the overwhelming tendency of things to fall apart via (1b).

___

Agazzi, E. and J. Faye, (eds.) 2001. The Problem of the Unity of Science. Sin-gapore: World Scientific Publishing. Co.

Aoki, I., 1991. Entropy principle for human development, growth and aging. Journal oj Theoretical Biology 150: 215-223.

Boltzmann, L., 1886/1974. The second law of thermodynamics. In McGuinness, B., editor. Ludwig Boltzmann, Theoretical Physics and Philosophical Problems. Dordrecht, D. Reidel.

Brooks, D.R. and E.O. Wiley, 1988. Evolution As Entropy: Toward a Unified Theory of Biology. Chicago: University of Chicago Press.

Carnot, S., 1824 / 1960. Reflections on the motive power of fire, and on machines fitted to develop that power. In Mendoza, E., editor, Reflections on the Motive Power of Fire and Other Papers. New York: Dover Pubs.

Chaisson, E. J., 2001. Cosmic Evolution: The Rise of Complexity in Natu-re Cambridge, MA : Harvard University Press.

Clausius, R., 1851. On the moving force of heat and the laws regarding the nature of heat itself which are deducible therefrom. Philosophical Magazine (Series 4) 2: 1-12.

Dawkins, R., 1976. The Selfish Gene. New York: Oxford University Press. Depew, D.J., C. Dyke, S.N. Salthe, E.D. Schneider, R.E. Ulanowicz, B. Weber and J.S.

Wicken,1989. Evolution in thermodynamic perspective: an ecological approach. Biology and Philosophy 4: 373-405.

Depew, D.J., and Weber, B.H., 1995. Darwinism Evolving: Systems Dynamics and the Genealogy of Natural-Selection. Cambridge, MA.: MIT Press.

Frautschi, S., 1982. Entropy in an expanding universe. Science 217: 593-599.

Fisher, R.A., 1958. The Genetical Theory of Natural Selection. New York: Dover Publications.

Huxley, T.H. 1898. Evolution and Ethics and Other Essays. New York: Appleton's

Jorgensen, S.E., 1999. State-of-the-art of ecological modelling with emphasis on development of structural dynamical models. Ecological Modelling 120: 75-96.

Jorgensen, S.E., 2001. A tentative fourth law of thermodynamics. Pages 303-348 in.

Jorgensen, S.E., editor, Thermodynamics and Ecological Modelling. Boca Raton, FL.: Lewis Pubs.

Kauffman, S.A., 2000. Investigations. New York: Oxford University Press.

Landsberg, P.T., 1984. Can entropy and "order" increase together? Physics Letters 102 A: 171-173.

Layzer, D., 1976. The arrow of time. Scientific American 233: 56-69.

Layzer, D., 1990. Cosmogenesis. New York: Oxford University Press.

Lotka, A.J., 1922. Contribution to the energetics of evolution. Proceedings of the National Academy of Science. 8: 147-151.

Neurath, O., R. Carnap and C. Morris (eds.), 1938-1969. Foundations of the Unity of Science: Toward an International Encyclopedia of Unified Science. Chicago: University of Chicago Press.

O'Grady, R.T. and D.R. Brooks, 1988. Teleology and biology, pp. 285-316. IN B.H. Weber, D.J. Depew and J.D. Smith (eds.) Entropy, Information, and Evolution. Cambridge, MA: MIT Press.

Odum, H.T., 1983. Systems Ecology: An Introduction. New York: Wiley Interscience.

Odum, H.T. and Pinkerton, R.C., 1955. Time's speed regulator, the optimum efficiency for maximum output in physical and biological systems. American Scientist 43: 331-343.

Prigogine, JL, 1980. From Being to Becoming: Time and Complexity in the Physical Sciences. San Francisco: W.H. Freeman & Co.

Rosen, R., 1985. Anticipatory Systems: Philosophical and Methodological Foundations. Oxford: Pergamon Press.

Salthe, S.N., 1975. Problems of macroevolution. (molecular evolution, phenotype definition, and canalization) as seen from a hierarchical viewpoint. American Zoolog ist 15: 295-314.

Salthe, S.N., 1988. Notes toward a formal history of the levels concept, pp. 53-64 IN G. Greenberg and E. Tobach (eds.) Evolution of Social Behavior and Integrative Levels. Hillside, NJ: L. Ehrlbaum Associates, Publishers.

Salthe, S.N., 1990. The evolution of the biosphere: towards a new mythology. World Futures: The Journal of General Evolution 30: 53-68.

Salthe, S.N., 1991. Two forms of hierarchy theory in Western discourse. International Journal of General Systems 18: 251-264.

Salthe, S.N., 1992. Science as the basis for a new mythological understanding. Uroburos 2: 25-45.

Salthe, S.N., 1993, a. Development and Evolution: Complexity and Change in Biology. Cambridge, MA: MIT Press.

Salthe, S.N., 1993,b. Creativity in natural science. WESSComm 3: 30-33.

Salthe, S.N., 2000, a. A classification of closure concepts. Annals of the New York Academy of Sciences 901: 35-41.

Salthe, S.N., 2000, b. Ecology and infodynamics. Journal of Social and Evolutionary Systems 21: 223-231.

Salthe, S.N., 2001. Natural philosophy and developmental systems. Systems Research and Behavioral Science 18: 403-410.

Salthe, S. N. in press, a. The natural philosophy of ecology: developmental systems ecology (infodynamics). In J. Drake and C. Zimmerman (eds.) Complexity in Ecological Systems.

Salthe, S.N. in press, b. An exercise in the natural philosophy of ecology. Ecological Modelling.

Salthe, S.N. and M. L. Crump, 1977. A Darwinian interpretation of hindlimb variability in frog populations. Evolution 31: 737-749.

Schneider, E.D. and Kay, J.J., 1994. Life as a manifestation of the Second Law of thermodynamics. Mathematical and Computer Modelling 19: 25-48.

Skinner, B.F., 1981. Selection by consequences. Science 213: 501-504. Soros, G, 1998. The Crisis of Global Capitalism: Open Society Endangered. London: Little, Brown.

Swenson, R., 1989, a. Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution. Systems Research 6: 187-198.

Swenson, R., 1989, b. The earth as an incommensurate field at the geo-cosmic interface: fundamentals to a theory of emergent evolution. Proceedings of the First Congress on Geo-cosmic Relations. Amsterdam: PUDOC Science Publishers.

Swenson, R., 1991, a. Order, evolution, and natural law: fundamental relations in complex system theory, pp. 125-148 IN C. Negoita (ed.) Cybernetics and Applied Systems. New York: Marcel Dekker.

Swenson, R., 199l,b. End-directed physics and evolutionary ordering: obviating the problem of the population of one. IN F. Geyer (ed.) The Cybernetics of Complex Systems: Self-organization, Evolution, and Social Change. Salinas, CA: Intersystems Publications.

Swenson, R.,1997. Autocatakinetics, evolution, and the law of maximum entropy production. Advances in Human Ecology 6: 1-47.

Taborsky, E. 2000. The complex information process. Entropy 2: 81-97. (www. mdpi.org/entropy)

Tannehill, I.R., 1938. Hurricanes: Their Natural History, Particularly Those of the West Indies and the Southern Coasts oj the United States. Princeton: Princeton University Press.

Thoday, J.M., 1953. Components of fitness. Symposium of the Society for Experimental Biology 7:96-113.

Tinkle, D.W., 1969. The concept of reproductive effort and its relation to the evolution of life histories of lizards. American Naturalist 103: 501-516.

Ulanowicz, R.E., 1997. Ecology: The Ascendent Perspective. New York: Columbia University Press.

Vernadsky, V.I., 1944. Problems of biogeochemistry II. Transactions of the Connecticut Academy of Arts and Sciences 35: 483-517.

Watson, A., 2002. Cosmic ripples confirm universe speeding up. Science 295: 2341-2342.

Zotin, A.I., 1972. Thermodynamic Aspects of Developmental Biology. Basel: S.Karger.