Açıklayıcı İpuculu ve Silikleştirilerek Basamaklandırılmış Çözümlü Örneklerin Öğrencilerin Kesir Problemleri Performansına Etkisi

Son yıllarda yapılan araştırmalar çözümlü örneklerin herhangi bir konuda veya matematik gibi alanlarda ön bilgileri yeterli olmayan öğrenciler için alternatif bir yaklaşım olduğunu göstermektedir. Çözümlüörnekler soruyu ve çözümünü içerir. Bu araştırmanın amacı dört farklıçözümlü örnek türünün (çözümlü örnekler, açıklayıcı ipuculu çözümlüörnekler, silikleştirilerek basamaklandırılmış çözümlü örnekler ve silikleştirilerek basamaklandırılmış ve açıklayıcı ipuculu çözümlü örnekler) başarısı düşük olan öğrencilerin kesir problemleri performansına etkisini incelemektir. Çalışma grubu bir devlet okulunda okuyan215 altıncı sınıf öğrencisi arasından seçilmiş 67 öğrenciden oluşmaktadır. Bu araştırmanın sonuçlarına göre silikleştirilerek basamaklandırılmış ve açıklayıcı ipuculu çözümlü örneklerin hem transfer hem deizleme testinde diğer çözümlü örnek türlerine göre başarıyı daha fazlageliştirdiği sonucuna ulaşılmıştır. Silikleştirilerek basamaklandırılmışve açıklayıcı ipuculu çözümlü örnekler sıradan okul ortamlarındaödevler veya sınıf çalışmaları yoluyla kolaylıkla uygulanabilir.

The Effect of Self-Explanation Prompts and Fading Stepsin Worked-out Examples on Students’ FractionProblems Performance

Recent studies have shown that worked-out examples are considered as an alternative approach for students who don’t have prior knowledge of a task or initial acquisition in domains like mathematics. Worked-out examples involve the presentation of a problem and its solution. The primary purpose of this study was to investigate the relative effects of four different types of worked-out examples (worked-out examples, worked-out examples with self-explanation prompts, fading worked-out examples without self-explanation prompts and fading worked-out examples with self-explanation prompts) on novice students’ math performance on fraction problems. The study group consisted of 67 students that were selected among 215 sixth grade students from a public school. According to the results of this study, the use of self-explanation prompts in combination with backward fading worked-out examples fosters learning in both transfer and follow-up studies. Backward fading worked-out examples using self-explanation prompts can be easily implemented and is compatible with ordinary framework conditions in schools with very simple means such as worksheets or homework.

___

  • Akbaba-Altun, S. (2006). Complexity of integrating computer technologies into education in Turkey. Journal of Educational Technology & Society, 9(1), 176-187.
  • Atkinson, R. K., Derry, S. J., Renkl, A. and Wortham, D. W. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70, 181-214. doi: 10.3102/00346543070002181.
  • Atkinson, R. K., Renkl, A. and Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95(4), 774-783. doi: 10.1037/0022-0663.95.4.774.
  • Berthold, K., Eysink, T. H. and Renkl, A. (2009). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 37, 345-363. doi: 10.1007/s11251-008-9051-z.
  • Bokosmaty, S., Sweller, J. and Kalyuga, S. (2015). Learning geometry probem solving by studying worked examples: Effects of learner guidance and expertice. American Educational Research Journal, 52(2), 307-333. doi: 10.3102/0002831214549450.
  • Bude, L., Van de Wiel, M. W. J, Imbos, T. and Berger, M. P. F. (2012). The effect of guiding questions on students’ performance and attitude towards statistics. British Journal of Educational Psychology, 82, 340-359. doi:10.1111/j.2044-8279.2011.02031.x.
  • Chandler, P. and Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293-332. doi: 10.1207/s1532690xci0804_2.
  • Chia, R. (1996). The problem of reflexitivity in organizational research: Towards a postmodern science of organization. Organization, 3(1), 31-59.
  • Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P. and Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145-182. doi: 10.1207/s15516709cog1302_1.
  • Chi, M. T. H., DeLeeuw, N., Chiu, M. H. and LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477. doi: 10.1207/s15516709cog1803_3.
  • Collins, A., Brown, J. S. and Newman, S. E. (1989). Cognitive apprenticeship: teaching the craft of reading, writing, and mathematics. In L. B. Resnick, (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Crippen, K. J. and Earl, B. L. (2007). The impact of web-based worked examples and self-explanation on performance, problem solving, and self-efficacy. Computers & Education, 49(3), 809-821. doi:10.1016/j.compedu.2005.11.018.
  • Darabi, A., Nelson, D. W. and Palanki, S. (2007). Acquisition of troublesho oting skills in a computer simulation: Worked example vs. conventional problem solving instructional strategies. Computers in Human Behavior, 23(4), 1809-1819. doi: 10.1007/s10648-015-9348-9.
  • Efklides A., Kiorpelidou, K. and Kiosseoglou, G. (2006). Worked-out examples in mathematics: Effects on performance and metacognitive experience. In A. Desoete and M. Veenman, (Eds.), Metacognition in mathematics education (pp. 11-33). New York: Nova Science Publishers.
  • Fleischmann, E. S. and Jones, R. M. (2002). Why example fading works: a qualitative analysis using cascade. In Proceedings, 24th Annual Conference of the Cognitive Science Society (pp. 298-303). Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Gabriel, F., Coché, F., Szucs, D., Carette, V. and Rey, B. (2013). A componential view of children's difficulties in learning fractions. Frontiers In Psychology, 4, 1-12.
  • Gerjets, P., Scheiter, K. and Catrambone, R. (2006). Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations? Learning and Instruction, 16, 104-121. doi: 10.1016/j.learninstruc.2006.02.007.
  • Hilbert, T. S., Renkl, A., Schworm, S., Kessler, S. and Reiss, K. (2008). Learning to teach with worked-out examples: a computer-based learning environment for teachers. Journal of Computer Assisted Learning, 24(4), 316-332. doi: 10.1111/j.1365-2729.2007.00266.x.
  • Kalyuga, S. (2009). Managing cognitive load in adaptive multimedia learning. New York: Information Science Reference.
  • Kalyuga, S. Ayres, P. L., Chandler, P. A. and Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23-31. doi: 10.1207/S15326985EP3801_4.
  • Kirschner, F., Kester, L. and Corbalan, G. (2011). Cognitive load theory and multimedia learning, task characteristics and learning engagement: the current state of the art. Computers in Human Behavior, 27(1), 1-4. doi: 10.1016/j.chb.2010.05.003.
  • Leppink, J., Broers, N. J., Imbos, T, van der Vleuten C. P. M. and Berger, M. P. F. (2012). Self-exlanation in the domain of statistics: an expertice reversal effect. Higher Education, 63, 771-784. doi: 10.1007/s10734-011-9476-1.
  • Miller, G. A. (1956). The magic number seven plus or minus two: Some limits in our capacity to process information. Psychological Review, 63, 81-97. doi: 10.1037/0033-295X.101.2.343.
  • Moreno, R. (2006). When worked examples don’t work: Is cognitive load theory at an Impasse? Learning and Instruction, 16(2), 170-181. doi: 10.1016/j.learninstruc.2006.02.006.
  • Ministry of National Education [MNE] (2013). Elementary school mathematics curriculum (grades 5-8). Ankara, Turkey: MNE.
  • National Council of Teachers of Mathematics [NCTM] (2000). Principles and standarts for school mathematics. Reston, Va: Author.
  • Ngu, B. H. and Yeung, A. S. (2013). Algebra word problem solving approaches in a chemistry context: Equation worked examples versus text editing. Journal of Mathematical Behavior, 32, 197-208. doi: 10.1016/j.jmathb.2013.02.003.
  • Olson, T. A. and Olson, M. (2013). The importance of context in presenting fraction problems to help students formulate models and representations as solution strategies. NCSM Journal of Mathematics Education Leadership, 14(2), 38-47.
  • Paas, F., van Gog, T. and Sweller, J. (2010). Cognitive load theory: new conceptualizations, specifications, and integrated research perspectives. Educational Psychology Review, 22(2), 115-121, 2010. doi: 10.1007/s10648-010-9133-8.
  • Reisslein, J., Reisslein, M. and Seeling, P. (2006). Comparing static fading with adaptive fading to independent problem solving: The impact on the achievement and attitudes of high school students learning electrical circuit analysis. Journal of Engineering Education, 95(3), 217-227. doi: 10.1002/j.2168-9830.2006.tb00894.x.
  • Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive science, 21(1), 1-29. doi: 10.1207/s15516709cog2101_1.
  • Renkl, A. (1999). Learning mathematics from worked-out examples: Analyzing and fostering self-explanations. European Journal of Psychology of Education, 14(4), 477-488. doi: 10.1007/BF03172974.
  • Renkl, A. (2002). Worked-out examples: Instructional explanations supportlearning by self explanations. Learning and instruction, 12(5), 529-556.
  • Renkl, A. and Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in cognitive skill acquisition: A cognitive load perspective. Educational Psychologist, 38(1), 15-22. doi: 10.1207/S15326985EP3801_3.
  • Renkl, A., Atkinson, R. K., Maier, U. H. and Staley, R. (2002). From example study to problem solving: Smooth transitions help learning. The Journal of Experimental Education, 70(4), 293-315. doi: 10.1080/00220970209599510.
  • Renkl, A., Stark, R., Gruber, H. and Mandl, H. (1998). Learning from worked-out examples: The effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90-108. doi: 10.1006/ceps.1997.0959.
  • Schunk, D. H. (2011). Learning theories: An educational perspective. Canada: Pearson Education.
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. doi: 10.1016/0364-0213(88)90023-7.
  • Sweller, J., van Merriënboer, J. J. G. and Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251-296. 10.1023/A:1022193728205.
  • Tarmizi, R. and Sweller, J. (1988). Guidance during mathematical problem solving. Journal of Educational Psychology, 80(4), 424-436. doi: 10.1037/0022-0663.80.4.424.
  • Van Gog, T., Kester, L. and Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36, 212-218. doi: 10.1016/j.cedpsych.2010.10.004.
  • Van Gog, T., Paas, F. and Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16, 154-164. doi: 10.1016/j.learninstruc.2006.02.003
  • Van Gog. T. and Rummel, N. (2010). Example-based learning: Integrating cognitive and social-cognitive research perspectives. Educational Psychology Review, 22(2), 155-174. doi: 10.1007/s10648-010-9134-7.
  • Van Loon-Hillen, N., Van Gog, T. and Brand-Gruwel, S. (2012). Effects of worked examples in a primary school mathematics curriculum. Interactive Learning Environments, 20(1), 89-99. doi: 10.1080/10494821003755510.
  • Van Merriënboer, J. J. G. and Ayres, P. (2005). Research on cognitive load theory and its design implications for e-learning. Educational Technology Research and Development, 53(3), 5-13. doi: 10.1007/BF02504793.
  • Van Merriënboer, J. J. G. and Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177. doi: 10.1007/s10648-005-3951-0.
  • Wu, Hung-Hsi. (2009). What’s sophisticated about elementary mathematics? American Educator, 3, 4-14.
  • Zhu, X. and Simon, H. A. (1987). Learning mathematics from examples. Cognition and Instruction, 4(3), 137-166
Kalem Uluslararası Eğitim ve İnsan Bilimleri Dergisi-Cover
  • ISSN: 2146-5606
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: Kalem Vakfı Okulları