Interaction of mannan oligosaccharide with immune system “transport of MOS in to the lamina propria”

Mannan oligosakkarid (MOS), Saccharomyces cerevisiae mayasının hücre duvarından elde edilen kompleks bir karbonhidrattır. Bu karbonhidrat Dünyada kümes ve besi hayvanları ile balıklarda verimlilik artışı ve sağlığın korunması amacıyla kullanılmaktadır. MOS’un bağışıklık sistemiyle olan etkileşimi ve mekanizması henüz tam olarak anlaşılmamıştır. Bu araştırmamızda MOS’un intestinal epitelyumdan geçip geçmediğini ve ince bağırsakta lamina propria’ya girip girmediğini incelemek amaçlanmıştır. MOS’un gastrointestinal kanalda akibetini araştırmak ve bağışıklık sistemi hücreleriyle olan etkileşimini anlayabilmek için albumin, dekstran ve MOS kullanılmıştır. Albumin negatif kontrol grubu olup, kolayca sindirlemez ve lamina propriya’ya nakledilmez. Dekstran pozitif control grubudur. Dendritik hücreler tarafından fagozitoza uğramaktadır. MOS ise deneysel grup için kullanılmıştır. Saf mannan, mannanca zengin bir çözeltiden 7-methoxycoumarin-3-isocyanate in dimethylsulphoxide ile reaksiyona girerek ve etanol çözeltisi ile çöktürülmesi sonucu elde edilmiştir. Elde edilen MOS çözeltisi floresans ile işaretlenmiştir. Çalışmada 16 adet 1 günlük piliçler kullanılmıştır. Her kafeste 4 piliç olmak üzere toplam 4 grup oluşturulmuştur. Her grup farklı diyetlerle beslenmiştir. Kontrol grubuna floresans işaretleme olmayan bazal diyet verilmiştir. Floresans işaretli MOS, albumin ve dekstranın bazal diyete göre rasyonu 20 mg/kg’dır. Araştırma üç hafta sürmüştür. Üçüncü haftanın sonunda piliçler karbondioksit ile sonlandırılmış; çıkarılan intestinal doku örnekleri %10’luk formalin çözeltisinde korunmuştur. Örneklerden parafin metoduyla tespit edilmiştir. Her örnekten 72 adet kesit hazırlanmıştır. MOS2un lamina propriaya geçişini tespit edebilmek amacıyla floresans mikroskopisi kullanılmıştır. Elde edilen veriler ANOVA ile analiz edilmiştir. P

Mannan oligosakkaridin immün sistemle etkileşimi “MOS’un lamina propria’ya geçiş mekanizması”

Mannan oligosaccharide (MOS) is a complex that is derived from the cell wall of the yeast Saccharomyces cerevisiae. This complex carbohydrate product has been utilized around the world to improve the productivity and wellbeing of poultry, fish and livestock. Questions related to the specific interaction between MOS and the immune cells still remain unclear. The objectives of this study are to investigate if MOS passes through the intestinal epithelium and if it is translocated to the lamina propria of the small intestine. In order to understand the fate of MOS in the gastrointestinal tract and its interaction with the immune related cells, this study compares the translocation of Albumin, the negative control which is known not to be quickly digested and not translocated; that of Dextran, the positive control which is known to be phagocytosed by dendritic cells and that MOS, the experimental group. Pure mannan was obtained from a mannan rich fraction by reacting with 7-methoxycoumarin-3-isocyanate in dimethylsulphoxide. The labeled product was isolated by ethanol precipitation. The MOS was labeled with a flourescent tag. In this study sixteen one-day old broiler chicks (Cobb x Cobb) were used. They were kept in brooder batteries with four chicks per pen. Each group (n=4) was assigned to a different fluorescent-labeled diet. The control group got the basal diet without fluorescent-tagged molecules in order to determine background levels of fluorescence. The ratio of fluorescent labeled MOS, albumin and dextran to the basic diet was 20 mg/kg. The experiment lasted three weeks. At the end of the study chickens were terminated with carbon dioxide. The removed intestinal segments were preserved in 10% formalin and fixed on the slides using the paraffin method. From each segment, 72 glass slides were prepared. Images captured by fluorescent microscopy were used to determine the extent of translocation of MOS into the lamina propria. The data was analyzed by ANOVA. P value <0.05 was considered to be significant. Foci of fluorescence from albumin were not detectable. The albumin was degraded prior to entrance into the lamina propria as expected in the negative control group. Thus it was not included in the statistical analysis. Comparatively, dextran, the positive control group was transported into the lamina propria, most significantly in the ileum. MOS, the experimental group was transported into the lamina propria. In the duodenum and jejunum, our results indicated that larger amounts of MOS were as transported into lamina propria as compared to dextran. In conclusion MOS does not interact specifically with the epithelial cells but it makes its way to the gut associated lymphoid tissue (GALT) of the lamina propria via an independent method, which appears to be mediated by dendritic cells as an immune surveillance mechanism that is vital in the mucosal immunity. MOS has likely a general adjuvant effect on immune system without causing &#8220;danger signals&#8221; that are inherent in pathogen. Further studies are needed to identify the mechanism of this interaction especially with M-Cells, which are specialized epithelial cells and play a key role in stimulating the immune system.

___

  • 1. Eggleston G, Cote GL: Oligosaccharides in Food and Agriculture. ACS Symposium Series, American Chemical Society, 2003.
  • 2. Klasing KC: Nutritional modulation of resistance to infectious diseases. Poult Sci 77, 1119-1125, 1998.
  • 3. Fleet GH: Cell Walls In The Yeasts. pp. 199-277, Academic Press, London, 1999.
  • 4. Lipke PN, Ovalle R: Cell wall architecture in yeast: New structure and new challenges. J Bacteriol, 180 (15): 3735-3740, 1998.
  • 5. Spring P, Wenk C, Dawson KA, Newman KE: The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci, 79, 205-211, 2000.
  • 6. Moran CA: Functional components of the cell wall of Sacchoaromyces cerevisiae: Application for yeast glucan and mannan. Nutritional bio-technology in the feed and food industries. Proceedings of AlTech’s 20th Annual Symposium, May 24-26, 2004.
  • 7. Firon N, Ashkenazi S, Mirelman D, Ofek I, Sharon N: Aromatic alpha glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect Immun, 55 (2): 472-476, 1987.
  • 8. Hayat J, Savage TF, Mirosh LW: The reproductive performance of two genetically distinct lines of medium white turkey hens when fed breeder diets with and without a yeast culture containing Saccharomyces cerevisiae. Anim Feed Sci Tech, 43, 291-301, 1993.
  • 9. Bradley GL: Evaluation of turkey (Meleagris gallopavo) breeder hen and market male performance when fed diets supplemented with a yeast culture containing Saccharomyces cerevisiae. Doctoral Dissertation, Oregon State University, Corvallis, Oregon, pp. 221, 1994.
  • 10. Bradley GL, Savage TF: The influences of pre-incubation storage duration and genotype on the hatchability of medium white turkey eggs from a diet containing a yeast culture of Saccharomyces cerevisiae. Anim Feed Sci Tech, 51, 141, 1995.
  • 11. Grieshop CM, Flickinger EA, Bruce KJ, Patil AR, Czarnecki-Maulden GL, Fahey GC Jr: Gastrointestinal and immunological responses of senior dogs to chicory and mannan-oligosaccharides. Arch Anim Nutr, 58 (6): 483-93, 2004.
  • 12. Swanson KS, Grieshop CM, Flickinger EA, Healy HP, Dawson KA, Merchen NR, Fahey GC Jr: Effects of supplemental fructooligosaccharides plus mannanoligosaccharides on immune function and ileal and fecal microbial populations in adult dogs. Arch Tierernahr, 56 (4): 309-318, 2002.
  • 13. Muchmore AV, Sathyamoorthy N, Decker J, Sherblom AP: Evidence that specific high-mannose oligosaccharides can directly inhibit antigen-driven T-cell responses. J Leukoc Bio, 48 (5): 457-64, 1990.
  • 14. Che TM, Johnson RW, Kelley KW, Van Alstine WG, Dawson KA, Moran CA, Pettigrew JE: Mannan oligosaccharide modulates gene expression profile in pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci, 27, 1186-1192, 2011.
  • 15. Iji PA, Saki AA, Tivey DR: Intestinal structure and function of broiler chickens on diets supplemented with mannan oligosaccharide. J Sci Food Agri, 81, 1186-1192, 2001.
  • 16. Valancony H, Humbert F, Rukelibuga J, Bougon M, Balaine L, Lalande F: Comparison of some substitutes for antibiotic additives in diets for turkey poults. Effects on production and on resistance to Salmonella colonization. Sci Tech Avicoles, 35, 25-34, 2001.
  • 17. Waldroup PW, Oviedo-Rondon EO, Fritts CA: Comparison of Bio-Mos® and antibiotic feeding programs in broiler diets containing copper sulfate. Int J Poult Sci, 2, 28-31, 2003.
  • 18. Kocher A, Denev SA, Dinev I, Nikiforov I, Scheidemann C: Effects of mannanoligosaccharides on composition of the cecal microflora and performance of broiler chickens. In, Proc. 4 BOKU-Symp. Tiererna¨hr., Tiererna¨hr. ohne antibiotische Leistingsfo¨rderer. Bodenkunde Wien, Vienna, Austria, 27 October, pp. 216-220, 2005.
  • 19. Ferket PR, Parks CW, Grimes JL: Benefits of dietary antibiotic and MOS supplementation for poultry. In, Multi-StatePoultry Meeting, May 16, 2002.
  • 20. Janardhana V, Broadway MM, Bruce MP, Lowenthal JW, Geier MS, Hughes RJ, Bean AG: Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J Nutr, 139 (7): 1404-409, 2009.
  • 21. Nollet L, Huyghebaert G, Spring P: Effect of dietary mannan oligosaccharide (Bio-Mos) on live performance of broiler chickens given an anticoccidial vaccine (Paracox) followed by a mild coccidial challenge. J Appl Poult Res, 16, 397-403, 2007.
  • 22. Cetin N, Güçlü BK, Cetin E: The effects of probiotic and mannan-oligosaccharide on some haematological and immunological parameters in turkeys. J Vet Med A Physiol Pathol Clin Med, 52 (6): 263-267, 2005.
  • 23. Raju MVLN, Devegowda G: Esterified-Glucomannan in broiler chicken diets-contaminated with aflatoxin, ochratoxin and T-2 toxin: Evaluation of its binding ability (in vitro) and efficacy as immunomodulator. Asian - Aust J Anim Sci, 15, 1051-1056, 2002.
  • 24. Shashidhara RG, Devegowda G: Effect of dietary mannan oligo-saccharide on broiler breeder production traits and immunity. Poult Sci, 82, 1319-1325, 2003.
  • 25. Shen YB, Piao XS, Kim SW, Wang L, Liu P, Yoon I, Zhen YG: Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J Anim Sci, 87 (8): 2614-2624, 2009.
  • 26. Baurhoo B, Ferket PR, Zhao X: Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult Sci, 88 (11): 2262-2272, 2009.
  • 27. Kim GB, Seo YM, Kim CH, Paik IK: Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult Sci, 90 (1): 75-82, 2011.
  • 28. Middelbos IS, Godoy MR, Fastinger ND, Fahey GC Jr: A dose-response evaluation of spray-dried yeast cell wall supplementation of diets fed to adult dogs: Effects on nutrient digestibility, immune indices, and fecal microbial populations. J Anim Sci, 85 (11): 3022-3032, 2007.
  • 29. Van der Jansman AJ, Smidt H, Yoon I: Effects of yeast culture on performance, gut integrity, and blood cell composition of weanling pigs. J Anim Sci, 85 (11): 3099-3109, 2007.
  • 30. Murphy AR, Kavanagh KA: Adherence of clinical isolates of Saccharomyces cerevisiae to buccal epithelial cells. Med Mycol, 39 (1): 123-127, 2001.
  • 31. Peaudecerf L, Rocha B: Role of the gut as a primary lymphoid organ. Immunol Lett, 140 (1-2): 1-6, 2011.
  • 32. Solis de los Santos F, Donoghue AM, Farnell MB, Huff GR, Huff WE, Donoghue DJ: Gastrointestinal maturation is accelerated in turkey poults supplemented with mannan oligosacharide yeast extract (Alphamune). Poult Sci, 86, 921, 2007.
  • 33. Kwiatkowski S, Thompson U, Knopf M, Kudupoje M, Özpinar H, Moran C: Method for the production of fluorescent labeled yeast cell wall mannan. In, Nutritional Biotechnology in the Feed and Food Industries. Proceedings of the 20th Annual Symposium, May 24-26, pp. 21-22, 2004.
  • 34. Ulman YI, Ulus IH, Ozpinar A, Genc SV: Preliminary notes for ethical conduct of animal experimentation with special reference to studies in Turkey. Kafkas Univ Vet Fak Derg, 17 (6): 1051-1056, 2011.
  • 35. Ergün G, Aktaş S: ANOVA modellerinde kareler toplamı yöntemlerinin karşılaştırılması. Kafkas Univ Vet Fak Derg, 15 (3): 481-484, 2009.
  • 36. Mendeş M, Akkartal E: Comparison of ANOVA F and WELCH Tests with their respective permutation versions in terms of type I error rates and test power. Kafkas Univ Vet Fak Derg, 16 (5): 711-716, 2010.
  • 37. Strickling JA, Harmon DL, Dawson KA, Gross KL: Evaluation of oligosaccharide addition to dog diets: Influences on nutrient digestion and microbial populations. An Feed Sci & Tech, 86, 205-219, 2000.
  • 38. Röckendorf N, Sperling O, Lindhorst TK: Trivalent cluster mannosides with aromatic partial structure as ligands for the type-1 fimbrial lectin of Escherichia coli. J Chem, 55, 87-93, 2002.
  • 39. Ferket PR, Parks CW, Grimes JL: Benefits of dietary antibiotic and MOS supplementation for poultry. In, Multi-StatePoultry Meeting. May 16, 2002.
  • 40. Asano M, Komiyama K: Polymeric immunoglobulin receptor. J Oral Sci, 53 (2): 147-156, 2011.
  • 41. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B: Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nature Immunol, 8, 1086-1094, 2007.
  • 42. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, Fehling HJ, Hardt WD, Shakhar G, Jung S: Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity, 31 (3): 502-512, 2009.
  • 43. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, Liu K, Jakubzick C, Ingersoll MA, Leboeuf M, Stanley ER, Nussenzweig M, Lira SA, Randolph GJ, Merad M: Origin of the lamina propria dendritic cell network. Immunity, 31 (3): 513-525, 2009.
  • 44. Vetvicka V, Thornton BP, Ross GD: Soluble beta-glucan poly-saccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest, 98 (1): 50-61, 1996.
  • 45. Swanson KS, Grieshop CM, Flickinger EA, Healy HP, Dawson KA, Merchen NR, Fahey GC Jr: Effects of supplemental fructooligosaccharides plus mannanoligosaccharides on immune function and ileal and fecal microbial populations in adult dogs. Arch Tierernahr, 56 (4): 309-318, 2002.
  • 46. Gouveia EMF, Silva IS, Van Onselem VJ, Corrêa RAC, Silva CJ: Use of mannanoligosacharides as an adjuvant treatment for gastrointestinal diseases and this effects on E.coli inactivated in dogs. Acta Cir Bras, 21 (4): 23-26, 2006.
  • 47. Meyer D: Prebiotic dietary fibres and the immune system. AgroFOOD Industry Hi-tech Immune System, 19 (3): 12-15, 2008.
  • 48. Baumann J, Park CG, Mantis NJ: Recognition of secretory IgA by DC-SIGN: Implications for immune surveillance in the intestine. Immunology Letters, 131 (1): 59-66, 2010.
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.