C Vitaminin Kitosan Nanoparçacıklardan Kontrollü Salımı

Bu çalışma iki aşamadan oluşmaktadır. Birinci aşama kitosanın nanoparçacıkların (ChNPs) sentezi ve karakterizasyonudur. İkincisi aşama, C vitamin yüklü ChNPS eldesi ve C vitamininin salım kinetiğinin incelenmesidir. ChNPs iyonik jelleşme yöntemine göre sentezlenmiştir. Sodyum tripolifosfat (TPP) çapraz bağlayıcı olarak kullanılmıştır. Sentezlenen ChNPs örneklerinin tanecik boyutu dağılımları, yüzey morfolojileri ve kristal yapıları sırasıyla Nanosizer, Taramalı Electron Mikroskobu (SEM) ve X-ışını difraktometresi (XRD) ile incelenmiştir. Hazırlanan ChNPs örneklerinin yapısal analizleri ve termal özellikleri sırasıyla, Fourier Transform Infrared (FTIR) spektrofotometresi ve termal gravimetrik analiz ile incelenmiştir. Aynı zamanda C vitamin yüklü ChNPs örneklerinin salım profilleri belirlenmiştir. Çalışmaların sonucunda, ChNPs örneklerinin ortalama parçacık boyutları 10 nm olarak ölçülmüştür. C vitamini yükleme verimi %86 C vitamini derişimi olarak hesaplanmıştır. Son olarak, C vitaminin ChNPs örneklerinden salım mekanizmasının difüzyon ve şişme kontrollü olduğu belirlenmiştir.

Controlled Release of Vitamin C from Chitosan Nanoparticles

This work is consisted of two parts. The first was the synthesis and characterization of nanoparticles (ChNPs) from Chitosan, a natural biopolymer. In the second part, preparation of Vitamin C loaded ChNPs and release of vitamin C from the loaded nanoparticles were investigated. ChNPs were synthesized according to the ionic gelation method and sodium tripolyphosphate (TPP) was used as the crosslinking agent. The particle size distribution of the synthesized ChNPs was determined by using Zeta Sizer. Surface morphologies and crystal structures of the nanoparticles were investigated by Scanning Electron Microscopy (SEM) and X- ray diffraction (XRD) analysis, respectively. Structural analysis and thermal properties of ChNPs were also investigated by Fournier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. Release porofile of the Vitamin C loaded nanoparticles at same time were determined. As a result, average particle size of the ChNPs was measured as 10 nm and loading efficiency of the ChNPs was calculated as 86% with very high vitamin C concentration. Finally, the release mechanism of vitamin C from nanoparticles was determined to be controlled by diffusion and swelling.

___

  • Y. Pan, et al., Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo, Int. J. Pharm., 249 (2002) 139-147.
  • S. Dash, et al., Kinetic modeling on drug release from controlled drug delivery systems, Acta Pol Pharm, 67 (2010) 217-23.
  • R.W. Korsemeyer, R. Gurny, E.M. Doelker, P. Buri, N.A. Peppas, Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm., 15 (1983) 25-35.
  • Q. Gan, et al., Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery, Colloid. Surf. B Biointer., 44 (2005) 65-73.
  • K.A. Janes, et al., Chitosan nanoparticles as delivery systems for doxorubicin, J. Control. Release., 73 (2001): 255-267.
  • Y. Xu, Y. Du., Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles, Int. J. Pharm., 250 (2003) 215-226.
  • S. Mitra, et al. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier, J. Control. Release., 74 (2001) 317-323.
  • Q. Lifeng, et al. Preparation and antibacterial activity of chitosan nanoparticles, Carbohydr. Res., 339 (2004) 2693-2700.
  • K. Santhi, et al., In-vitro Characterization of chitosan nanoparticles of fluconazole as a carrier for Sustained ocular delivery, J. Nanosci. Nanotechnol., 7 (2017) 41-50.
  • J. Gu, K. Al-Bayati, E.A. Ho, Development of antibodymodified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes, Drug. Deliv. Transl. Res., (2017) 1-10.
  • S. Vimal, et al., Synthesis and characterization of CS/ TPP nanoparticles for oral delivery of gene in fish, Aquaculture., 358 (2012) 14-22.
  • H. Ravi, V. Baskaran, Biodegradable chitosanglycolipid hybrid nanogels: A novel approach to encapsulate fucoxanthin for improved stability and bioavailability, Food Hydrocoll., 43 (2015) 717-725.
  • B. Mosinger, Higher cholesterol in human LDL is associated with the increase of oxidation susceptibility and the decrease of antioxidant defence: experimental and simulation data, BBA Mol. Bas., 1453 (1999) 180- 184.
  • M. Jeserich, T. Schindler, M. Olschewski, M. Unmüssig, H. Just, U. Solzbach, Vitamin C improves endothelial function of epicardial coronary arteries in patients with hypercholesterolaemia or essential hypertension—assessed by cold pressor testing, Eur. Heart J., 20 (1999) 1676-1680.
  • M. Mietus-Snyder, M. J. Malloy, Endothelial dysfunction occurs in children with two genetic hyperlipidemias: improvement with antioxidant vitamin therapy, J. Pediatr., 133 (1998) 35-40.
  • A. Alishahi, et al., Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles, Food Chem., 126 (2011) 935-940.
  • H.M. Zhang, N. Wakisaka, Vitamin C inhibits the growth of a bacterial risk factor for gastric carcinoma:  Helicobacter pylori, Cancer, 80 (1997) 1897-1903.
  • G. Shklar, J.L. Schwartz, Ascorbic acid and cancer, Subcell. Biochem., 25 (1996) 233-247.
  • S.Y. Shiau, T.S. Hsu, Quantification of vitamin C requirement for juvenile hybrid tilapia,  Oreochromisniloticus=Oreochromis aureus, with  l-ascorbyl-2 monophosphate-Na and  l-ascorbyl2-monophosphate-Mg, Aquaculture, 175 (1999) 317– 326.
  • E.J. Jacobs, C.J. Connell, A.V. Patel, A. Chao, C. Rodriguez, J. Seymour, et al., Vitamin C and vitamin E supplement use and colorectal cancer mortality in a large American cancer society cohort, Cancer Epidemiol. Biomar. Prev,, 10 (2001) 17-23.
  • E. Esposito, F. Cervellati, E. Menegatti, C. Nastruzzi, R. Cortesi, Spray dried Eudragit microparticles as encapsulation devices for vitamin C, Int. J. Pharm., 242 (2002) 329-334.
  • M. Hamidi, A. Azadi, H. Ashrafi, P. Rafiei, S. Mohamadi-samani, Taguchi orthogonal array design for the optimization of hydrogel nanoparticles for the intravenous delivery of small-molecule drugs, J. Appl. Polym. Sci., 126 (2012) 1714-1724.
  • W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique, Coll. Surf. B., 90 (2012) 21-27.
  • L. Bugnicourt, P. Alcouffe, C. Ladavière, Elaboration of chitosan nanoparticles: favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects, Coll. Surf. A., 457 (2014) 476-486.
  • P. Calvo, et al, Novel hydrophilic chitosan‐ polyethylene oxide nanoparticles as protein carriers, J. Appl. Polym. Sci., 63 (1997) 125-132.
  • B. Sarmento, et al, Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers, Int. J. Pept. Res. Ther., 12 (2006) 131-138.
  • M. de la Fuente, et al, Chitosan-based nanostructures: a delivery platform for ocular therapeutics, Adv. Drug Deliv. Rev., 62 (2010) 100-117.
  • A. Grenha, Chitosan nanoparticles: a survey of preparation methods, J. Drug Target., 20 (2012) 291- 300.
  • M. Garcia-Fuentes, M.J. Alonso, Chitosan-based drug nanocarriers: where do we stand?, J. Control. Release., 161 (2012) 496-504.
  • K.A. Janes, P. Calvo, M.J. Alonso, Polysaccharide colloidal particles as delivery systems for macromolecules, Adv. Drug. Deliv. Rev., 47 (2001) 83- 97.
  • L. Bugnicourt, L. Catherine, Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications, Prog. Polym. Sci., 60 (2016) 1-17.
  • M. Dogan, N. Ugurlu, F. Yulek, Ketorolac tromethamine loaded chitosan nanoparticles as a nanotherapeutic system for ocular diseases, J. Biol. Chem., 41 (2013) 81-86.
  • K.G.H. Desai, H. J. Park, Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying,   J. Microencapsul.,   22 (2005) 179- 192.
  • A. Altinisik, K. Yurdakoc, Chitosan/poly(vinyl alcohol) hydrogels for amoxicillin release, Polym. Bull., 71 (2014) 759-774.