Some Characteristic Properties of Chestnut and Rhododendron Honeys in Turkey

Chestnut (Castanea sativa Mill.) and Rhododendron (Rhododendron spp. L.) (mad honey) honeys are produced generally in Black Sea Region in Turkey and both of them are the special honeys because of their organic component content and known their high antioxidant capacity. In the first step of this study we researched the melissopalynological differentiation of the chestnut and rhododendron honeys and then in the second step we determined the chemical compounds and sugar content of the rhododendron, chestnut and mixed chestnut&rhododendron honeys. For this purpose total 18 honey samples were collected from 4 different districts from Black Sea Region of Turkey and melissopalynological analyses were done by microscope. Chemical composition and sugar content (fructose&glucose) were determined by High Performance Liquid Chromatograpy (HPLC) and Gas Chromatography-Mass Spectrometry (GC-MS). After melissopalynological anaylses were obtained 10 monofloral chestnut, 2 monofloral rhododendron and 6 mixed chestnut&rhododendron honeys. As a result of sugar analysis with HPLC, F/G rates were found between 1.17 and 1.80. GC-MS chemical substance analyses of honeys revealed alcohols, aldehydes, ketones, aliphatic acids and their esters, carboxylic acids and their esters and flavanonoids.

___

  • E. Alissandrakis, P.A. Tarantilis, C. Pappas, P.C. Harizanis, M. Polissiou, Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys and flowers to identification of botanical marker compounds, LWT-Food Sci. Tech., 44 (2011) 1042-1051.
  • S. Silici, A.T. Atayoglu, Mad honey intoxication: a systematic review on the 1199 cases, Food Chem. Toxic., 86 (2015) 282-290.
  • P. Stevens, Rhododendron L. Flora of Turkey and the East Aegean Islands, 6 (1978) 90-94.
  • Y. Qiang, B. Zhou, K. Gao, Chemical constituents of plants from the genus Rhododendron, Chem. & Biod., 8 (2011) 792-815.
  • K.F. Lampe, Rhododendrons, mountain laurel, and mad honey, Jama, 259 (1988) 2009-2009.
  • S. Cestèle, W.A. Catterall, Molecular mechanisms of neurotoxin action on voltage-gated sodium channels, Biochimie, 82 (2000) 883-892.
  • T. Narahashi, I. Seyama, Mechanism of nerve membrane depolarization caused by grayanotoxin I. J. Phys., 242,2 (1974) 471-487.
  • R.P. Wodehouse, Pollen grains: Mcgraw-Hill Book Company, Inc; New York; London, 1935.
  • K. Sorkun, Türkiye’nin Nektarlı Bitkileri, Polenleri ve Balları: Palme Yayıncılık, Türkiye, 2008. L.P. Oddo, R. Piro, É. Bruneau, C. Guyot-Declerck, T. Ivanov, J. Piskulová, H. Russmann, Main European unifloral honeys: descriptive sheets, Apidologie, 35 (2004) S38-S81.
  • A.Ö. Tüylü, K. Sorkun, The investigation of morphologic analysis of pollen grains which are economically important and collected by Apis mellifera L., Hacettepe J. Bio. Chem., 35 (2007) 31-38.
  • F. Corvucci, L. Nobili, D. Melucci, F.V. Grillenzoni, The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis, Food Chem., 169 (2015) 297-304.
  • A.G. Sabatini, L. Bortolotti, G.L. Marcazzan, Conoscere il miele: Avenue media, 2007.
  • A. Terrab, A.G. González, M.J. Díez, F.J. Heredia, Characterisation of Moroccan unifloral honeys using multivariate analysis, European Food Res. Tech., 218 (2003) 88-95.
  • S. Bogdanov, E. Baumann, Bestimmung von Honigzucker mit HPLC, Mitt Geb Lebensmittelunters Hyg, 79 (1988) 198-206.
  • Türk Gıda Kodeksi Bal Tebliği, 2012/58 C.F.R. (2012).
  • Codex Standard 12. Revised Codex Standard for Honey, Standards and Standard Methods, 11 C.F.R. 2001.
  • J.W. White Jr, Honey., In Advances in food research, 24 (1978), 287-374.
  • A.B. Manzanares, Z.H. García, B.R. Galdón, E.M. Rodríguez-Rodríguez, C.D. Romero, Physicochemical characteristics and pollen spectrum of monofloral honeys from Tenerife, Spain, Food Chem., 228 (2017) 441-446. 441-446.
  • Z. Can, O. Yildiz, H. Sahin, E.A. Turumtay, S. Silici, S. Kolayli, An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles, Food Chem., 180 (2015) 133-141.
  • G. Bonaga, A.G. Giumanini, The volatile fraction of chestnut honey. J. Api. Res., 25 (1986) 113-120.
  • G. Bonaga, A.G. Giumanini, G. Gliozzi, Chemical composition of chestnut honey: analysis of the hydrocarbon fraction J. Agricult. Food Chem., 34 (1986) 319-326.
  • A. Bouseta, S. Collin, J.P. Dufour, Characteristic aroma profiles of unifloral honeys obtained with a dynamic headspace GC-MS system, J. Api. Res., 31 (1992) 96-109.
  • C. Guyot, A. Bouseta, V. Scheirman, S. Collin, Floral origin markers of chestnut and lime tree honeys, J. Agricult. Food Chem., 46 (1998) 625-633.
  • B. Radovic, M. Careri, A. Mangia, M. Musci, M. Gerboles, E. Anklam, Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey, Food Chem., 72 511-520.
  • L.F. Cuevas-Glory, J.A. Pino, L.S. Santiago, E. SauriDuch, A review of volatile analytical methods for determining the botanical origin of honey, Food Chem., 103 (2007) 1032-1043.
  • X. Yu, M. Zhao, F. Liu, S. Zeng, J. Hu, Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products, Food Res. Int., 51 (2013) 397–403.