Fonksiyonel Polisakkaritler İçeren Kollajen Kriyojeller

Araştırmacılar doku mühendisliği ve rejeneratif tıp uygulamalarında, hücre çoğalması ve büyümesi, doku hasarının onarılmasını ve yenilenmesini desteklemek için yeni doku iskeleleri araştırmaları yapmaktadırlar. Günümüzde çok sayıda farklı polimerik malzeme ve değişik hazırlama teknikleri kullanılsa da, henüz hangi doku iskelesinin doku tamiri ve yenilenmesi için en iyidir? sorusunun cevabı için bir uzlaşı yoktur. Hidrojellerin bir türü olan kriyojeller ve kriyojel hazırlama tekniği olan kriyojelasyon, doku mühendisliği uygulamaları açısından kısmen yeni sayılırlar. Bu çalışmada, karboksimetil selüloz ve dekstran içeren fonksiyonel polisakkarit içeren kollajen kriyojeller hazırlanmış ve kimyasal, yapısal ve biyolojik değerlendirmeler ile karakterize edilmiştir. Sonuçlar, hazırlanan fonksiyonel polisakkarit birimleri içeren kollajen kriyojellerin kimyasal ve termal olarak uygun özelliklerinin yanında biyo ve kan uyumluluklarının iyi olduğunu ortaya koyulmuştur. Sonuç olarak, bu kriyojeller doku mühendisliği ve rejeneratif tıp uygulamaları için uygun bir aday doku iskelesi olarak kullanılabilirler.

Functional Polysaccharides Blended Collagen Cryogels

Researches investigate new types of scaffolds for tissue engineering and regenerative medicine applications to support cell proliferation and growth as well as tissue repair and regeneration. Although, there are several types of polymeric materials and various kinds of preparation techniques are already used today; there is still no consensus on the answer of the question “what is the best scaffold for tissue repair and regeneration?”. Cryogels, which is a kind of hydrogels and, cryogelation, which is the technique for cryogel preparation, are rather new for tissue engineering applications. Here in this study, dextran and carboxymethyl cellulose functional polysaccharides blended collagen cryogels were prepared and characterized by chemical, structural and biological evaluations. Results show that, these collagen cryogels with their polysaccharides functional components have proper chemical and thermal characteristics and show good bio and hemocompatibility. Therefore, these cryogels can be used as a candidate scaffold for tissue engineering and regenerative medicine applications.

___

  • J. Autian, Biological model systems for the testing of the toxicity of biomaterials, Polymers in Medicine and Surgery, Springer, Boston, MA, 1975.
  • T. Nagai, N. Suzuki, Y. Tanoue, N. Kai, Collagen from tendon of Yezo Sika deer (Cervus nippon yesoensis) as By-Product, Food Nutr. Sci., 3 (2012) 72-79.
  • P.R.F.D.S. Moraes, S. Saska, H. Barud, L.R.D. Lima, V.D.C.A. Martins, A.M.D.G. Plepis, S.J.L. Ribeiro, A.M.M. Gaspar, Bacterial cellulose/collagen hydrogel for wound healing, Mater. Res., 19 (2016) 106-116.
  • B. León-Mancilla, M. Araiza-Téllez, J. Flores-Flores, M. Piña-Barba, Physico-chemical characterization of collagen scaffolds for tissue engineering, J. Appl. Res. Tech., 14 (2016) 77-85.
  • N.A. Hoenich, Cellulose for medical applications: past, present, and future, BioResources, 1 (2006) 1-11.
  • Y.D. Czaja WK, Kawecki M, Brown RM Jr., The future prospects of microbial cellulose in biomedical applications, Biomacromol., 8 (2007) 1-12.
  • R.A.C. João Maia, Jorge F.J. Coelho, Pedro N.Simões, M. Helena Gil, Insight on the periodate oxidation of dextran and its structural vicissitudes, Polymer, 52 (2011) 258-265.
  • R. Kluger, A. Alagic, Chemical cross-linking and protein-protein interactions-a review with illustrative protocols, Bioorganic Chem., 32 (2004) 451-472.
  • S. Mavila, O. Eivgi, I. Berkovich, N.G. Lemcoff, Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles, Chem. Rev., 116 (2016) 878-961.
  • M. Rafat, F. Li, P. Fagerholm, N.S. Lagali, M.A. Watsky, R. Munger, T. Matsuura, M. Griffith, PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering, Biomaterials, 29 (2008) 3960-3972.
  • L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, C. Han, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterials, 24 (2003) 4833-4841.
  • P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, S. Bernstorff, Fibrillar structure and mechanical properties of collagen, J. Struc. Biol., 122 (1998) 119-122.
  • L. Cen, W. Liu, L. Cui, W. Zhang, Y. Cao, Collagen tissue engineering: development of novel biomaterials and applications, Pediatric Res., 63 (2008) 492-496.
  • A. Sharma, S. Bhat, T. Vishnoi, V. Nayak, A. Kumar, Three-dimensional supermacroporous carrageenangelatin cryogel matrix for tissue engineering applications, Bio. Med. Res. Int., X (2013) 1-15.
  • S. Odabas, G.A. Feichtinger, P. Korkusuz, I. Inci, E. Bilgic, A.S. Yar, T. Cavusoglu, S. Menevse, I. Vargel, E. Piskin, Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes, J. Tissue Eng. Regen. Med., 7 (2013) 831-840.
  • M.V. Konovalova, P.A. Markov, E.A. Durnev, D.V. Kurek, S.V. Popov, V.P. Varlamov, Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application, J. Biomed. Mater. Res. A, 105 (2017) 547-556.
  • C.H. Chen, C.Y. Kuo, Y.J. Wang, J.P. Chen, Dual function of glucosamine in gelatin/hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic phenotype for cartilage tissue engineering, Int. J. Mol. Sci., 17 (2016) 1-22.
  • N. Bolgen, I. Vargel, P. Korkusuz, E. Guzel, F. Plieva, I. Galaev, B. Matiasson, E. Piskin, Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model, J. Biomed. Mater. Res. A, 91 (2009) 60-68.
  • M. Uygun, A.A. Karagozler, A. Denizli, Molecularly imprinted cryogels for carbonic anhydrase purification from bovine erythrocyte, Artif. Cells Nanomed. Biotechnol., 42 (2014) 128-137.
  • A. Kumar, A. Bhardwaj, Methods in cell separation for biomedical application: cryogels as a new tool, Biomed. Mater., 3 (2008) 1-12.
  • D. Cimen, F. Yilmaz, I. Percin, D. Turkmen, A. Denizli, Dye affinity cryogels for plasmid DNA purification, Mater. Sci. Eng. Mater. Biol. Appl., 56 (2015) 318-324.
  • M. Andac, I.Y. Galaev, H. Yavuz, A. Denizli, Molecularly imprinted cryogels for human serum albumin depletion in: Affinity Chromatography: Methods and Protocols, S. Reichtelt, ed., Methods in Molecular Biology Series, volume 1286, pp 233-237, Humana Press, 2015.
  • V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 (2003) 445-451.
  • S.J. Hollister, R.D. Maddox, J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials, 23 (2002) 4095-4103.
  • B.P. Chan, K.W. Leong, Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 17 Suppl. 4 (2008) 467-479.
  • L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Biodegradable polymer scaffolds for tissue engineering, Biotechnol., 12 (1994) 689-693.
  • S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng., 7 (2001) 679-689.
  • R.M. Nerem, A. Sambanis, Tissue engineering: from biology to biological substitutes, Tissue Eng., 1 (1995) 3-13.