DFT ve Başlangıç Yöntemlerini Kullanılarak Klortalidon ve Terbütalinin Asidik Ayrışma Sabitlerinin Belirlenmesi
Bu çalışmada klortalidon ve terbütalin ilaçlarının pKa değerleri sulu çözeltileri içinde hesaplanmıştır. B3LYP hesaplamaları ile 6-31+G(d) temel setinden faydalanmak amaçlanmıştır. Hidrojen bağı verici özelliği yüksek olan ve aynı zamanda klortalidon ve terbütalin için asitlik sabitlerinin hesaplanmasında teorik açıdan vazgeçilmez olan denge ve tepkimeler gösterilmiştir. Var olan türler ve su molekülleri arasındaki hidrojen bağı oluşumlarını analiz etmek için Tomasi yöntemi kullanılmıştır. Böylece klortalidon ve terbütalinin alkali su çözeltisi içerisindeki katyon, anyon ve nötr oluşumlarının, sırasıyla bir, iki, üç ve dört su molekülüyle çözünebildiği saptanmıştır. Sonraki adımda hesaplanan pKa değerleri deneysel sonuçlarla karşılaştırılmış ve kabul edilebilir bir örtüşme görülmüştür. Elde edilen veriler uygulanan tekniğin sulu çözeltilerde pKa tahminlerinde kullanışlı bir seçenek olacağını göstermektedir.
Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods
In the present study, pKa values of both drug called Chlorthalidone and Terbutaline were determined in aqueous solution. For this purpose, the B3LYP calculation with the 6-31+G(d) basis set was utilized. The reactions and equilibria that possess a high hydrogen-band-donor capability and constitute the indispensable theoretical basis to calculate the acidity constants of Chlorthalidone and Terbutaline, are shown. To analyze the formation of intermolecular hydrogen bonds between the existent species and water molecules, Tomasi’s method was used. In this way, it was determined that in alkaline aqueous solutions the cation, anion, and neutral species of Chlorthalidone and Terbutaline are solvated with one, two, three, and four molecules of water, respectively. To proceed, the calculated pKa were compared with the experimental values, which there is comparable agreement between them. The resulting data illustrated that the method was likely to be useful for the prediction of pKa values in aqueous solution.
___
- F. Kiani, A.A. Rostami, S. Sharifi, A. Bahadori, M.J. Chaichi, Determination of acidic dissociation constants of glycine, valine, phenylalanine, glycylvaline, and glycylphenylalanine in water using ab initio methods, J. Chem & Eng. Data., 55 (2010) 2732-2740.
- Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev., 22 (1993) 409-416.
- S.E. Blanco, M.C. Almandoz, F.H. Ferretti, Determination of the overlapping pKa values of resorcinol using UV-visible spectroscopy and DFT methods, Spectrochimica. Acta. Part A., 61 (2005) 93-102.
- F. Ruff, I.C. Csizmadia, Organic reactions, equilibria, kinetics and mechanism, Elsevier, London (1994). 44. G.A. Jeffrey, An introduction to hydrogen bonding, Oxford University Press, Oxford (1997).
- P.W. Atkins, Physical Chemistry, 6th ed., Oxford University Press, England (1998).
- M. Shalaeva, J. Kenseth, F. Lombardo, A. Bastin, Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers, J. Pharm. Sci., 97 (2008) 2581-2606.
- D.L. Rabenstein, T.L. Sayer, Determination of microscopic acid by nuclear magnetic resonance spectrometry, J. Anal. Chem., 48 (1976) 1141-1146.
- M. Borkovec, M. Brxnda, G.J.M. Koper, B. Spiess, Resolution of microscopic Protonation mechanisms in polyprotic molecules, Int. J. Chem., 56 (2002) 695- 700.
- Z. Szakacs, M. Krasni, B. NoszaI, Determination of microscopic acid–base parameters from NMR–pH titrations, Anal & Bioanal. Chem., 378 (2004) 1428- 1448.
- K. Takacs-Nova´k, B. NoszaI, M. Tökes-Kövesdi, G. Szasz, Acid-base properties of terbutaline in terms of protonation macro- and microconstants, J. Pharm & Pharmacology., 47 (1995) 431-438.
- R.I. Allen, K.J. Box, J.E.A. Comer, C. Peake, K.Y. Tam, Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs, J. Pharm & Biomedical. Anal., 17 (1998) 699-712.
- B.G. Johnson, M.J. Frisch, Analytic second derivatives of the gradient-corrected density functional energy. Effect of quadrature weight derivatives, Chem. phys. Lett., 216 (1993) 133-139.
- Z. Dega-Szafran, A. Katrusiak, M. Szafran, Molecular structure of the complex of N-methylmorpholine betaine with 2,4-dinitrophenol, J. Mol. Struct., 741 (2005) 1-9.
- W.J. Hehre, L. Radom, P.V.R. Schleyer, A.J. Pople, Ab initio molecular orbital theory, Wiley, New York (1989).
- Miertus S, Tomasi EJ, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chem phys 1982;65: 239-245. 35. H.A. Laitinen, W.E. Harris, Chemical Analysis; McGraw-Hill: New York (1975).
- M.J. Frisch et al. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA (1998).
- Program CS Chem3D 5.0; Program for Molecular Modeling and Analysis; Cambridge Soft Corporation: MA, USA (2000).
- C. Lee, W. Yang, R.G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev, B., 37 (1988) 785- 792.
- M.D. Liptak, K.C. Gross, P.G. Seybold, S. Feldgus, G.C. Shields, Absolute pKa determinations for substituted phenols, J. Am. Chem. Soc., 124 (2002) 6421-6427.
- P. Hudaky, A. Perczel, Conformation dependence of pKa: Ab initio and DFT investigation of histidine, J. Phys. Chem. A., 108 (2004) 6195-6205.
- K. Mohle, H.J. Hofmann, Stability order of basic peptide conformations reflected by density functional theory, J. Mol. Model., 4 (1998) 53-60.
- N.S. Sosnowska, Calculation of acidic dissociation constants in water: solvation free energy terms. Their accuracy and impact, Theor. Chem. Account., 118 (2007) 281-289.
- P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. B., 136 (1964) 864-871.
- A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev, A., 38 (1988) 3098-4003.
- R.D. Tosso, M.A. Zamora, F.D. Survire, R.D. Enriz, Ab initio and DFT study of the conformational energy hypersurface of cyclic Gly-Gly-Gly, J. Phys. Chem. A., 113 (2009) 10818-10825.
- C.P. Kelly, C.J. Cramer, D.G. Truhlar, Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants, J. Phys. Chem, A., 110 (2006) 2493-2499.
- A. Avdeef, J.J. Bucher, Accurate measurements of the concentration of hydrogen ions, Anal. Chem., 50 (1978) 2137-2142.
- Z. Qiang, C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water. Res., 38 (2004) 2874- 2890.
- W. Stumm, J.J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters, WileyInterscience, New York (1996).
- 13. G. Thomas, Medicinal chemistry, an introduction, John Wiley & Sons: West Sussex (2000).
- J.L. Beltra´n, N. Sanli, G. Fonrodona, D. Barro´n, G. Ozkanb, J. Barbosa, Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media, Anal. Chim. Acta., 484 (2003) 253-263.
- P. Janosˇ, Determination of equilibrium constants from chromatographic and electrophoretic measurements, J. Chromatography. A., 1037 (2004) 15-28.
- S.K. Pool, S. Patel, K. Dehring, H. Workman, C.F. Pool, Determination of acid dissociation constants by capillary electrophoresis, J. Chromatography, A., 1037 (2004) 445-454.
- C.E. Kibbey, S.K. Poole, B. Robinson, J.D. Jackson, D. Durham, An integrated process for measuring the physicochemical properties of drug candidates in a preclinical discovery environment, J. Pharm. Sci., 90 (2001) 1164-1175.
- H.Y. Ando, T. Heimbach, pKa determinations by using a HPLC equipped with DAD as a flow injection apparatus, J. Pharm & Biomedical. Anal., 16 (1997) 31- 39.
- Z. Jia, T. Ramstad, M. Zhong, Medium-throughput pK a screening of pharmaceuticals by pressure-assisted capillary, Electrophoresis., 22 (2001) 1112-118.
- L.P. Boulet, A. Becker, D. Bérubé, (CAMJ) Can. Med. Assoc. J., 161 (1999) S1-S62.
- J.E. Gerich, M. Langlois, C. Noacco, V. Schneider, P.H. Forsham, Adrenergic modulation of pancreatic glucagon secretion in man, J. Clinical. Inves., 53 (1974) 1441-1446.
- E.K. Main, D.M. Main, S.G. Gabbe, Chronic oral terbutaline tocolytic therapy as associated with maternal glucose intolerance, Am. J. Obstetrics & Gynecolog., 157 (1987) 644-647.
- Kurtz TW, Chlorthalidone: don’t call it “thiazide-like” anymore, Am. Heart Assoc., 56 (2010) 335-337.
- Sica DA, Resistant hypertension: diagnosis, evaluation, and treatment, Am. Heart Assoc., 47 (2006) 321-322.
- D.H. Ellison, J. Loffing, Thiazide effects and side effects: insights from molecular genetics, Am. Heart Assoc., 54 (2009) 196-202.
- R.W. Matthew, R. Agarwal, Heart disease and stroke statistics, Am. Heart Assoc., 59 (2012) 1089-1095.
- M.O. Emeje, I.C. Obidike, E.I. Akpabio, S.I. Ofoefule, Toxicology and pharmaceutical science, Recent Advances in Novel Drug Carrier Systems, InTech, Turkey, 2012.
- D.G. Arkfield, E. Rubenstein, Quest for the Holy Grail to cure arthrithis and osteoporosis: emphasis on bone drug delivery systems, Adv. Drug. Deliver. Rev., 57 (2005) 939-944.