Transport Characteristics of Selected Dyes Through Track-Etched Multiporous Pet Membranes

We have investigated the transport properties of track-etched poly(ethylene terephthalate) (PET) membranes in order to pursue possible applications for effective separation and sensing purposes. We have obtained cylindrical and conical nanopores on PET membranes using symmetrical and asymmetrical track-etch methods, respectively. We have used the fabricated nanopores for the transport of charged dye molecules. Effect of applied potential, temperature and pore geometry was shown for crystal violet dye. We have also investigated the transport of methyl orange and shown negatively charged carboxylate groups on the PET nanopore walls along with applied potential enhanced the selective transport of cations. The temperature and the conical geometry were also found to promote the transport of cations. 

___

  • H. Hatori, H. Takagi, Y. Yamada, Gas separation properties of molecular sieving carbon membranes with nanopore channels, Carbon, 42 (2004) 1169-1173.
  • S.G. Lemay, Nanopore-based biosensors: the interface between ionics and electronics, ACS nano, 3 (2009) 775-779.
  • A.S. Prabhu, T.Z.N. Jubery, K.J. Freedman, R. Mulero, P. Dutta, M.J. Kim, Chemically modified solid state nanopores for high throughput nanoparticle separation, J. Phys. Condens. Matter, 22 (2010) 454107.
  • S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Söderlund, C.R. Martin, Antibody-based bio-nanotube membranes for enantiomeric drug separations, Science, 296 (2002) 2198-2200.
  • J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. U.S.A., 93 (1996) 13770-13773.
  • S.M. Bezrukov, M. Winterhalter, Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel, PRL, 85 (2000) 202.
  • C. Dekker, Solid-state nanopores, Nat. Nanotechnol., 2 (2007) 209-215.
  • K.K. Hu, Y.X. Wang, H.J. Cai, M.V. Mirkin, Y. Gao, G. Friedman, Y. Gogotsi, Open Carbon Nanopipettes as Resistive-Pulse Sensors, Rectification Sensors, and Electrochemical Nanoprobes, Anal. Chem., 86 (2014) 8897-8901.
  • H.M. Kim, M.H. Lee, K.B. Kim, Theoretical and experimental study of nanopore drilling by a focused electron beam in transmission electron microscopy, Nanotechnology, 22 (2011) 275303.
  • A.G. Ahmadi, S. Nair, Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental comparisons, Microelectron. Eng., 112 (2013) 149-156.
  • N.L. Kazanskiy, S.P. Murzin, Y.L. Osetrov, V.I. Tregub, Synthesis of nanoporous structures in metallic materials under laser action, Opt. Lasers Eng., 49 (2011) 1264-1267.
  • N. Patterson, D. Adams, V. Hodges, M. Vasile, J. Michael, P. Kotula, Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection, Nanotechnology, 19 (2008) 235304.
  • J. He, L. Lin, P. Zhang, S. Lindsay, Identification of DNA basepairing via tunnel-current decay, Nano Lett., 7 (2007) 3854-3858.
  • P.Y. Apel, Y.E. Korchev, Z. Siwy, R. Spohr, M. Yoshida, Diode-like single-ion track membrane prepared by electro-stopping, Nucl. Instrum. Methods Phys. Res. B., 184 (2001) 337-346.
  • P.Y. Apel, I.V. Blonskaya, O.L. Orelovitch, B.A. Sartowska, R. Spohr, Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements, Nanotechnology, 23 (2012) 225503
  • V. Chavan, C. Agarwal, A.K. Pandey, J.P. Nair, P. Surendran, P.C. Kalsi, A. Goswami, Controlled development of pores in polyethylene terepthalate sheet by room temperature chemical etching method, J. Memb. Sci., 471 (2014) 185-191.
  • A. Kocer, L. Tauk, P. Dejardin, Nanopore sensors: From hybrid to abiotic systems, Biosens. Bioelectron., 38 (2012) 1-10.
  • A. Mara, Z. Siwy, C. Trautmann, J. Wan, F. Kamme, An Asymmetric Polymer Nanopore for Single Molecule Detection, Nano Lett., 4 (2004) 497-501.
  • C.A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M.D. Fischbein, K. Venta, Z. Luo, A.C. Johnson, DNA translocation through graphene nanopores, Nano Lett., 10 (2010) 2915-2921.
  • D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett., 12 (2012) 3602-3608.
  • H. Bayley, Are we there yet ? Comment on “Nanopores: A journey towards DNA sequencing” by Meni Wanunu, Phys. Life Rev., 9 (2012) 161-163.
  • T.C. Kuo, L.A. Sloan, J.V. Sweedler, P.W. Bohn, Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: effect of surface charge density and Debye length, Langmuir, 17 (2001) 6298-6303.
  • S.P. Adiga, C. Jin, L.A. Curtiss, N.A. Monteiro‐Riviere, R.J. Narayan, Nanoporous membranes for medical and biological applications, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1 (2009) 568-581.
  • T.A. Desai, S. Sharma, R.J. Walczak, A. Boiarski, M. Cohen, J. Shapiro, T. West, K. Melnik, C. Cosentino, P.M. Sinha, Nanoporous implants for controlled drug delivery, BioMEMS and Biomedical Nanotechnology Volume III, Springer, Berlin, Germany, 2006.
  • S. Kipke, G. Schmid, Nanoporous alumina membranes as diffusion controlling systems, Adv. Funct. Mater., 14 (2004) 1184-1188.
  • L. Velleman, G. Triani, P.J. Evans, J.G. Shapter, D. Losic, Structural and chemical modification of porous alumina membranes, Microporous Mesoporous Mater., 126 (2009) 87-94.
  • C.J. Lo, T. Aref, A. Bezryadin, Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams, Nanotechnology, 17 (2006) 3264.
  • G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M. Vandersypen, C. Dekker, DNA translocation through graphene nanopores, Nano Lett., 10 (2010) 3163-3167.
  • S.B. Lee, C.R. Martin, pH-Switchable, ionpermselective gold nanotubule membrane based on chemisorbed cysteine, Anal. Chem., 73 (2001) 768- 775.
  • K.B. Jirage, J.C. Hulteen, C.R. Martin, Nanotubulebased molecular-filtration membranes, Science, 278 (1997) 655-658.
  • S.B. Lee, C.R. Martin, Electromodulated molecular transport in gold-nanotube membranes, J. Am. Chem. Soc., 124 (2002) 11850-11851.
  • K.B. Jirage, J.C. Hulteen, C.R. Martin, Effect of thiol chemisorption on the transport properties of gold nanotubule membranes, Anal. Chem., 71 (1999) 4913- 4918.
  • S. Yu, S.B. Lee, C.R. Martin, Electrophoretic protein transport in gold nanotube membranes, Anal. Chem., 75 (2003) 1239-1244.
  • E.N. Savariar, K. Krishnamoorthy, S. Thayumanavan, Molecular discrimination inside polymer nanotubules, Nat. Nanotechnol., 3 (2008) 112-117.
  • M. Ali, B. Yameen, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Biosensing and supramolecular bioconjugation in single conical polymer nanochannels, facile incorporation of biorecognition elements into nanoconfined geometries, J. Am. Chem. Soc., 130 (2008) 16351-16357. Q.H. Nguyen, M. Ali, V. Bayer, R. Neumann, W. Ensinger, Charge-selective transport of organic and protein analytes through synthetic nanochannels, Nanotechnology, 21 (2010) 365701.
  • K. Kececi, N. San, D. Kaya, Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane, Talanta, 144 (2015) 268- 274.
  • Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • Molinspiration Cheminformatics Software. 2001, Molinspiration: Nova Ulica, SK-900 26 Slovensky Grob, Slovak Republic.
  • J.E. Wharton, P. Jin, L.T. Sexton, L.P. Horne, S.A. Sherrill, W.K. Mino, C.R. Martin, A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors, Small, 3 (2007) 1424-1430.
  • D. Kaya, A. Dinler, N. San, K. Kececi, Effect of Pore Geometry on Resistive-Pulse Sensing of DNA Using Track-Etched PET Nanopore Membrane, Electrochim. Acta, 202 (2016) 157-165.
  • Q.H. Nguyen, M. Ali, S. Nasir, W. Ensinger, Transport properties of track-etched membranes having variable effective pore-lengths, Nanotechnology, 26 (2015) 485502.