Yoğunluk Fonksiyon Teorisi (DFT) ile Propanın Oksidatif Dehidrojenasyonu için Karbon Yapı Destekli Vanadyum Katalizörlerinin Çalışılması: Kinetik ve Termodinamik

Bu çalışmada propanın 1 VO4(CH3 )3 yüzeyindeki oksidatif dehidrojenasyonu, bölünmüş valans temel kümesi 6-31+G* ve B3LYP seviyesinde Yoğunluk Fonksiyon Teorisi hesaplamaları ile incelenmiştir. Monomerik vanadyum türleri kataliz için gözönüne alınmış ve modellenmiştir. Bunlara ek olarak O2 gazı kullanılarak yenilenen indirgenmiş katalizör içeren iki tamamlanmış katalitik döngü sunulmuştur. Tepkime iki alt basamakta ilerlemektedir; birinci basamakta bir hidrojen 48,35 cal/mol aktivasyon enerjisiyle V= O1 vanadyum grubu tarafından alıkonulur ve hız belirleyici basamaktır. Sonrasında propil radikali ve O2 atomu arasında (V-O2) oluşan bağ dolayısıyla ikinci ara ürün oluşur. Devamında O1 atomu propen oluşumu ve ikinci geçiş haline ulaşmak için metil grubundan 131.63 kcal/mol enerjiyle bir hidrojen koparır. Sonuçların, bütün tepkimelerde izopropil ara radikali kararlı kale getirmek için vanadil oksijen (V= O1) ve köprüleme oksijeni (V-O-C) kullanıldığını göstermiştir.

DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic

The detailed mechanism for oxidative dehydrogenation of propane on the 1 VO4(CH3 )3 surface has been studied in depth with density functional theory (DFT) calculations at the B3LYP level and standard split-valance basis set, 6-31+G*. Monomeric vanadia specie was considered and modeled as catalysis. In addition, the mechanisms of the two complete catalytic cycle, involving the regeneration of the reduced catalyst using O2 gaseous have been reported. The reaction proceeds in two subsequent steps which at the first, one hydrogen abstracting by the vanadium of V= O1 group with about 48.35 cal/mol activation energy is the rate determining step. Subsequently, second intermediate has been formed through a bond formed between the propyl radical and O2 atom (V-O2). In continue, the O1 atom abstracts one hydrogen atom from the methyl group with a 131.63 kcal/ mol barrier to form propene by passing to second transition state. The results of our calculations have found that all the reactions involve vanadyl oxygen (V=O1), with the bridging oxygen (V-O-C) serving to stabilize the isopropyl radical intermediate.

___

  • R.G. Parr, W. Yang, Density-Functional Theory of atoms and molecules, Oxford University Press, 1989.
  • A.D. Becke, Density functional thermochemistry, III the role of exact exchange, J. Chem. Phys., 98 (1993) 5648-5652.
  • C. Pieck, M. Banares, J. Fierro, Propane oxidative dehydrogenation on VOx /ZrO2 catalysts, J. Catal., 224 (2004) 1-7.
  • H.H. Kung, Oxidative dehydrogenation of light (C2 to C4) Alkanes, Adv. catal. 40 (1994) 1-38.
  • J. Le Bars, J. Vedrine, A. Auroux, B. Pommier, G. Pajonk, Calorimetric study of vanadium pentoxide catalysts used in the reaction of ethane oxidative dehydrogenation, J. Phys. Chem., 96 (1992) 2217-2221.
  • S.T. Oyama, G.T. Went, K.B. Lewis, A.T. Bell, G.A. Somorjai, Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported vanadium oxide catalysts, J. Phys. Chem., 93 (1989) 6786-6790.
  • M. Ganduglia-Pirovano, J. Sauer, Stability of reduced V2 O5 (001) Surfaces, Phys. Rev. B, 70 (2004) 045422- 1-045422-13.
  • R. Enjalbert, J. Galy, A refinement of the structure of V2 O5, Acta. Cryst. Sect. C: Cryst. Struct. Commun., 42 (1986) 1467-1469.
  • S.T. Oyama, Adsorbate bonding and the selection of partial and total oxidation pathways, J. Catal., 128 (1991) 210-217.
  • W. Daniell, A. Ponchel, S. Kuba, F. Anderle, T. Weingand, D. Gregory, H. Knözinger, Characterization and catalytic behavior of VOx -CeO2 catalysts for the oxidative dehydrogenation of propane, Top. Catal., 20 (2002) 65-74.
  • A. Khodakov, B. Olthof, A.T. Bell, E. Iglesia, Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions, J. Catal., 181 (1999) 205-216.
  • B. Frank, S. Wrabetz, O.V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, Calorimetric study of propane and propylene adsorption on the active surface of multiwalled carbon nanotube catalysts, Chem. Phys. Chem., 12 (2011) 2709-2713.
  • J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts, Nature Chem., 1 (2009) 37-46.
  • B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, Adv. Catal., 45 (2000) 71-129.
  • C.A. Carrero, R. Schlögl, I.E. Wachs, R. Schomaecker, Critical literature review of the kinetics for the oxidative dehydrogenation of propane over welldefined supported vanadium oxide catalysts, ACS Catal., 4 (2014) 3357-3380.
  • M. Calatayud, C. Minot, Reactivity of the V2 O5-TiO2 - anatase catalyst: role of the oxygen sites, Top. Catal., 41 (2006) 17-26.
  • M. Calatayud, B. Mguig, C. Minot, A periodic model for the V2 O5–TiO2 (anatase) catalyst. stability of dimeric species, Surf. Sci., 526 (2003) 297-308.
  • A.S. Kootenaei, J. Towfighi, A. Khodadadi, Y. Mortazavi, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane, Appl. Surf. Sci., 298 (2014) 26-35.
  • M. Calatayud, B. Mguig, C. Minot, A DFT study on the hydrated V2 O5-TiO2 -anatase catalyst: stability of monomeric species, Theor. Chem. Acc., 114 (2005) 29- 37.
  • E. Mamedov, V.C. Corberán, Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks, Appl. Catal. A-Gen., 127 (1995) 1-40.
  • D. Whitehurst, Abstracts of papers of the American Chemical Society, Am. Chem. Soc., 1155 16TH ST, NW, Washington, DC 20036, 1997, pp. 77-FUEL.
  • M.D. Argyle, K. Chen, A.T. Bell, E. Iglesia, Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia, J. Catal., 208 (2002) 139-149.
  • M.V. Ganduglia-Pirovano, C. Popa, J. Sauer, H. Abbott, A. Uhl, M. Baron, D. Stacchiola, O. Bondarchuk, S. Shaikhutdinov, H.J. Freund, Role of ceria in oxidative dehydrogenation on supported vanadia catalysts, J. Am. Chem. Soc., 132 (2010) 2345-2349.
  • F. Cavani, F. Trifiro, The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins, Catal. Today, 24 (1995) 307-313.
  • C. Popa, M.V. Ganduglia-Pirovano, J. Sauer, Periodic density functional theory study of von species supported on the CeO2 surface, J. Phys. Chem. C, 115 (2011) 7399-7410.
  • M.J. Cheng, K. Chenoweth, J. Oxgaard, A. van Duin, W.A. Goddard, Single-site vanadyl activation, functionalization, and reoxidation reaction mechanism for propane oxidative dehydrogenation on the cubic v4o10 cluster, J. Phys. Chem. C, 111 (2007) 5115-5127.
  • O.V. Khavryuchenko, B. Frank, A. Trunschke, K. Hermann, R. Schlögl, Quantum-chemical investigation of hydrocarbon oxidative dehydrogenation over spinactive carbon catalyst clusters, J. Phys. Chem. C, 117 (2013) 6225-6234.
  • X. Fan, G. Zhang, F. Zhang, Multiple roles of graphene in heterogeneous catalysis, Chem. Soc. Rev., 44 (2015) 3023-3035.
  • B. Frank, R. Blume, A. Rinaldi, A. Trunschke, Oxygen insertion catalysis by sp2 carbon, R. Schlögl, Angew. Chem. Int. Ed., 50 (2011) 10226-10230.
  • H. Kim, G.A. Ferguson, L. Cheng, S.A. Zygmunt, P.C. Stair, L.A. Curtiss, Structure-specific reactivity of alumina-supported monomeric vanadium oxide species, J. Phys. Chem. C, 116 (2012) 2927-2932.
  • S.A. Al-Ghamdi, H.I. de Lasa, Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2 O3 catalyst, Fuel, 128 (2014) 120-140.
  • B. Barghi, M. Fattahi, F. Khorasheh, Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds, reaction kinetics, React. Kinet. Mech. Cat., 107 (2012) 141-155.
  • M. Sheintuch, D.S. Simakov, Alkanes dehydrogenation, membrane reactors for hydrogen production processes, Springer, (2011) 183-200.
  • T. García, J. López, J.L. Nieto, R. Sanchis, A. Dejoz, M. Vázquez, B. Solsona, Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts, Fuel Process. Technol., 134 (2015) 290- 296.
  • C. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S.H. Overbury, Open-Cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane, J. Am. Chem. Soc., 131 (2009) 7735-7741.
  • J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D.S. Su, Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane, Science, 322 (2008) 73- 77.
  • B. Frank, J. Zhang, R. Blume, R. Schlögl, D.S. Su, Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons, Angew. Chem. Int. Ed., 48 (2009) 6913-6917.
  • B. Frank, M. Morassutto, R. Schomäcker, R. Schlögl, D.S. Su, Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes, ChemCatChem., 2 (2010) 644-648.
  • X. Rozanska, R. Fortrie, J. Sauer, Oxidative dehydrogenation of propane by monomeric vanadium oxide sites on silica support, J. Phys. Chem. C., 111 (2007) 6041-6050.