Olefin Metatez Tepkimeleri ile Norbornen İçeren Fonksiyonel Poliesterlerin Modifikasyonu

Bu çalışmada doymamış fonksiyonel poliester türevleri 5-norbornen-2,3-dikarboksilik anhidrit ve 1,6-hekzandiol bileşiklerinin polikondenzasyon tepkimeleri ile elde edilmiştir. Fonksiyonel doymamış poliesterler metil akrilat kullanılarak halka açılma/çapraz metatez tepkimeleri ile modifiye edilmiştir. Poliesterlerin çözü- nürlük ve hidrofobik/hidrofilik karakterleri halka açılma/çapraz metatez tepkimeleri ile alil son grubuna sahip poli(etilenglikol) bileşikleri entegre edilerek değiştirilmiştir. Doymamış poliesterlerdeki norbornen grubu sayesinde jel benzeri malzemeler, Grubbs birinci, üçüncü ve Hoveyda-Grubbs ikinci nesil katalizörleri varlığında halka açılım metatez polimerizasyon tepkimeleri ile ana poliester zinciri üzerinde yan poli(norbornen) zincirlerinin oluşumu ile elde edilmiştir.

Modification of Functional Polyesters Bearing Norbornene Moieties via Olefin Metathesis Reactions

In this study, unsaturated functional polyester derivatives were synthesized via polycondensation reactions of 5-norbornene-2,3-dicarboxylic anhydride and 1,6-hexanediol. Functional unsaturated polyesters were modified using methyl acrylate as ring opening/cross-metathesis reaction partner. The solubility and hydrophobic/hydrophilic character of polyester was tuned by integrating allyl end capped poly(ethyleneglycol) by ring opening/cross-metathesis reactions. Norbornene moiety of unsaturated polyesters allowed us to use ring opening metathesis polymerization reactions to form side-chain poly(norbornene) on main polyester chain using Grubbs 1st, 3rd and Hoveyda-Grubbs 2nd generation catalysts as initiators, resulting in gel-like materials.

___

  • R.F. Fischer, Polyesters from epoxides and anhydrides, J. Polym. Sci. Part A: Polym. Chem., 44 (1960) 155-172.
  • Y. Tachibana, M. Yamahata, K. Kasuya, Synthesis and characterization of a renewable polyester containing oxabicyclic dicarboxylate derived from furfural, Green Chem., 15 (2013) 1318-1325.
  • X. Michel, S. Fouquay, G. Michaud, F. Simon, J.M. Brusson, J.F. Carpentier, S.M. Guillaume, α,ω- Bis(trialkoxysilyl) difunctionalized polycyclooctenes from ruthenium-catalyzed chain-transfer ring-opening metathesis polymerization, Polym. Chem., 7 (2016) 4810-4823.
  • F. Sinclair, L. Chen, B.W. Greenland, M.P. Shaver, Installing multiple functional groups on biodegradable polyesters via post-polymerization olefin crossmetathesis, Macromolecules, 49 (2016) 6826-6834.
  • L. Fournier, C. Robert, S. Pourchet, A. Gonzales, L. Williams, J. Prunet, C.M. Thomas, Facile and efficient chemical functionalization of aliphatic polyesters by cross metathesis, Polym. Chem., 7 (2016) 3700-3704.
  • C. Ai, G. Gong, X. Zhao, P. Liu, Determination of carboxyl content in carboxylated nitrile butadiene rubber (XNBR) after degradation via olefin cross metathesis, Polym. Test., 60 (2017) 250-252.
  • A.B. Cherian, B.T. Abraham, E.T. Thachil, Modification of unsaturated polyester resin by polyurethane prepolymers, J. App. Polym. Sci., 100 (2006) 449- 456.
  • R. Baumgartner, Z. Song, Y. Zhang, J. Cheng, Functional polyesters derived from alternating copolymerization of norbornene anhydride and epoxides, Polymer Chemistry, 6 (2015) 3586-3590.
  • A.H. Brown, V.V. Sheares, Amorphous unsaturated aliphatic polyesters derived from dicarboxylic monomers synthesized by Diels−Alder chemistry, Macromolecules, 40 (2007) 4848-4853.
  • Y. Wang, G.A. Ameer, B.J. Sheppard, R.A. Langer, Tough biodegradable elastomer, Nat. Biotechnol., 20 (2002) 602-606.
  • B.G. Amsden, G. Misra, F. Gu, H.M. Younes, Synthesis and characterization of a photo-cross-linked biodegradable elastomer, Biomacromolecules, 5 (2004) 2479-2486.
  • Y. Tachibana, T. Masuda, M. Funabashi, M. Kunioka, Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomassbased furfural and evaluation of its biomass carbon ratio, Biomacromolecules, 11 (2010) 2760-2765.
  • J.F. Lutz, Sequence-controlled polymerizations: the next Holy Grail in polymer science, Polym. Chem., 1 (2010) 55-62.
  • F.B. Bujans, R. Martinez, M.Y.Y. Pedram, P. Ortiz, H. Frey, Water-soluble polyesters from long chain alkylesters of citric acid and poly(ethylene glycol), Eur. Polym. J., 43 (2007) 1288-1301.
  • A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science, 296 (2002) 1673-1676.
  • C.M. Agrawal, K.F. Haas, D.A. Leopold, H.G. Clark, Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents, Biomaterials, 13 (1992) 176-182.
  • G. Chen, T. Ushida, T. Tateishi, Scaffold design for tissue engineering Macromol. Biosci., 2 (2002) 67-77.
  • K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release, Chem. Rev., 99 (1999) 3181-3198.