Türkiye’deki Kestane ve Ormangülü Ballarının Bazı Karakteristik Özellikleri

Türkiye’de genellikle Karadeniz bölgesinde üretilen kestane (Castanea sativa Mill.) ve ormangülü (Rhododendron spp. L.) (delibal) balları içerdiği organik bileşenler ve yüksek antioksidan seviyeleri ile bilinen önemli ballardır.Bu çalışmanın ilk aşamasında kestane ve ormangülü ballarının melissopalinolojik farklılıkları araştırılmış, ikinci aşamasında ise ormangülü, kestane ve kestane ormangülü karışık balların şeker içerikleri ve kimyasal bileşenleri belirlenmiştir. Bu amaçla Türkiye’nin Karadeniz Bölgesinde, 4 farklı yerden toplamda 18 bal örneği toplanmıştır ve mikroskop ile melissopalinolojik analizleri yapılmıştır. Kimyasal bileşim ve şeker içeriği (fruktoz&glikoz) HPLC ve GC-MS ile belirlenmiştir. Melissopalinolojik analizler sonrasında 10 balın monofloral kestane balı, 2’sinin monofloral ormangülü ve 6’sının da kestane ormangülü karışık ballar olduğu saptanmıştır. HPLC ile yapılan şeker analizleri sonucunda F/G oranının 1.17 ve 1.80 arasında olduğu, GC-MS kimyasal analizleri sonucunda da balların alkoller, aldehidler, ketonlar, alifatik asit ve esterleri, carboksilik asit ve esterleri ile flavanoidleri içerdiği ortaya çıkarılmıştır.

Some Characteristic Properties of Chestnut and Rhododendron Honeys in Turkey

Chestnut (Castanea sativa Mill.) and Rhododendron (Rhododendron spp. L.) (mad honey) honeys are produced generally in Black Sea Region in Turkey and both of them are the special honeys because of their organic component content and known their high antioxidant capacity. In the first step of this study we researched the melissopalynological differentiation of the chestnut and rhododendron honeys and then in the second step we determined the chemical compounds and sugar content of the rhododendron, chestnut and mixed chestnutρdodendron honeys. For this purpose total 18 honey samples were collected from 4 different districts from Black Sea Region of Turkey and melissopalynological analyses were done by microscope. Chemical composition and sugar content (fructose&glucose) were determined by High Performance Liquid Chromatograpy (HPLC) and Gas Chromatography-Mass Spectrometry (GC-MS). After melissopalynological anaylses were obtained 10 monofloral chestnut, 2 monofloral rhododendron and 6 mixed chestnutρdodendron honeys. As a result of sugar analysis with HPLC, F/G rates were found between 1.17 and 1.80. GC-MS chemical substance analyses of honeys revealed alcohols, aldehydes, ketones, aliphatic acids and their esters, carboxylic acids and their esters and flavanonoids.

___

  • X. Yu, M. Zhao, F. Liu, S. Zeng, J. Hu, Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products, Food Res. Int., 51 (2013) 397–403.
  • L.F. Cuevas-Glory, J.A. Pino, L.S. Santiago, E. SauriDuch, A review of volatile analytical methods for determining the botanical origin of honey, Food Chem., 103 (2007) 1032-1043.
  • B. Radovic, M. Careri, A. Mangia, M. Musci, M. Gerboles, E. Anklam, Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey, Food Chem., 72 511-520.
  • C. Guyot, A. Bouseta, V. Scheirman, S. Collin, Floral origin markers of chestnut and lime tree honeys, J. Agricult. Food Chem., 46 (1998) 625-633.
  • A. Bouseta, S. Collin, J.P. Dufour, Characteristic aroma profiles of unifloral honeys obtained with a dynamic headspace GC-MS system, J. Api. Res., 31 (1992) 96-109.
  • G. Bonaga, A.G. Giumanini, G. Gliozzi, Chemical composition of chestnut honey: analysis of the hydrocarbon fraction J. Agricult. Food Chem., 34 (1986) 319-326.
  • G. Bonaga, A.G. Giumanini, The volatile fraction of chestnut honey. J. Api. Res., 25 (1986) 113-120.
  • Codex Standard 12. Revised Codex Standard for Honey, Standards and Standard Methods, 11 C.F.R. 2001.
  • Z. Can, O. Yildiz, H. Sahin, E.A. Turumtay, S. Silici, S. Kolayli, An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles, Food Chem., 180 (2015) 133-141.
  • A.B. Manzanares, Z.H. García, B.R. Galdón, E.M. Rodríguez-Rodríguez, C.D. Romero, Physicochemical characteristics and pollen spectrum of monofloral honeys from Tenerife, Spain, Food Chem., 228 (2017) 441-446.
  • J.W. White Jr, Honey., In Advances in food research, 24 (1978), 287-374.
  • Türk Gıda Kodeksi Bal Tebliği, 2012/58 C.F.R. (2012).
  • S. Bogdanov, E. Baumann, Bestimmung von Honigzucker mit HPLC, Mitt Geb Lebensmittelunters Hyg, 79 (1988) 198-206.
  • A. Terrab, A.G. González, M.J. Díez, F.J. Heredia, Characterisation of Moroccan unifloral honeys using multivariate analysis, European Food Res. Tech., 218 (2003) 88-95.
  • F. Corvucci, L. Nobili, D. Melucci, F.V. Grillenzoni, The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis, Food Chem., 169 (2015) 297-304.
  • L.P. Oddo, R. Piro, É. Bruneau, C. Guyot-Declerck, T. Ivanov, J. Piskulová, H. Russmann, Main European unifloral honeys: descriptive sheets, Apidologie, 35 (2004) S38-S81.
  • 13. A.G. Sabatini, L. Bortolotti, G.L. Marcazzan, Conoscere il miele: Avenue media, 2007.
  • A.Ö. Tüylü, K. Sorkun, The investigation of morphologic analysis of pollen grains which are economically important and collected by Apis mellifera L., Hacettepe J. Bio. Chem., 35 (2007) 31-38.
  • K. Sorkun, Türkiye’nin Nektarlı Bitkileri, Polenleri ve Balları: Palme Yayıncılık, Türkiye, 2008.
  • R.P. Wodehouse, Pollen grains: Mcgraw-Hill Book Company, Inc; New York; London, 1935.
  • P. Stevens, Rhododendron L. Flora of Turkey and the East Aegean Islands, 6 (1978) 90-94.
  • S. Silici, A.T. Atayoglu, Mad honey intoxication: a systematic review on the 1199 cases, Food Chem. Toxic., 86 (2015) 282-290.
  • T. Narahashi, I. Seyama, Mechanism of nerve membrane depolarization caused by grayanotoxin I. J. Phys., 242,2 (1974) 471-487.
  • S. Cestèle, W.A. Catterall, Molecular mechanisms of neurotoxin action on voltage-gated sodium channels, Biochimie, 82 (2000) 883-892.
  • K.F. Lampe, Rhododendrons, mountain laurel, and mad honey, Jama, 259 (1988) 2009-2009.
  • Y. Qiang, B. Zhou, K. Gao, Chemical constituents of plants from the genus Rhododendron, Chem. & Biod., 8 (2011) 792-815.
  • E. Alissandrakis, P.A. Tarantilis, C. Pappas, P.C. Harizanis, M. Polissiou, Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys and flowers to identification of botanical marker compounds, LWT-Food Sci. Tech., 44 (2011) 1042-1051.