FARKLI MUMLARLA OLUŞTURULAN OLEOJELLERİN REOLOJİK VE TEKSTÜREL ÖZELLİKLERİ

Bu çalışmanın temel amacı, farklı mumların (ayçiçeği, pirinç kepeği ve karnauba) yağ-yapı oluşturma özelliklerinin anlaşılmasını sağlamaktır. Ayçiçeği yağı ile mumların oleojel oluşturma özellikleri reoloji, tekstürel ve katı yağ oranı ölçümleri gibi farklı teknikler kullanılarak değerlendirilmiştir. Ayçiçeği mumu içeren oleojelleri, takiben pirinç kepeği ve karnauba mumu oleojelleri, en yüksek sertlik değerlerini sergilemişlerdir. Öte yandan, en yüksek iç ve dış yapışkanlık özellikleri karnauba mumu oleojellerinden elde edilirken; en düşük iç ve dış yapışkanlık değerleri ayçiçeği mumu oleojellerinde gözlenmiştir. Oleojellerin viskoziteleri sıcaklığın fonksiyonu olarak gözlenmiştir. Arrhenius eşitliğine göre, en yüksek aktivasyon enerjisi (Ea) karnauba mumu oleojellerinden elde edilmiştir. Viskoelastik özelliklerdeki değişim oleojellerin sertlik değerlerindeki değişimle paralellik göstermiştir. En yüksek depolama modülüs ve kayıp modülüs ayçiçeği mumu oleojellerinden elde edilirken, en düşük depolama modülüs ve kayıp modülüs değerleri karnauba mumu oleojellerinde gözlenmiştir. Tüm oleojel örnekleri arasında, karnauba mumu oleojel örneklerinin katı yağ oranı vücut sıcaklığına yakın bir sıcaklıkta sabit kalmıştır. 

RHEOLOGICAL AND TEXTURAL CHARACTERITICS OF OLEOGELS FORMED BY DIFFERENT WAXES

The main objective of this study was to understand the oil-structuring properties of different waxes (sunflower, rice bran and carnauba). The formation of oleogels of sunflower oil with waxes was evaluated by using different techniques such as rheological, textural and solid fat content measurements. The oleogels with sunflower exhibited the highest hardness followed by rice bran and carnauba wax oleogels. On the other hand, the most adhesive and cohesive properties were obtained from the carnauba wax oleogel, while the lowest one was observed in sunflower wax oleogel. The viscosities of oleogels were observed as a function of temperature. According to Arrhenius equation, the highest activation energy (Ea) was obtained from carnauba wax oleogel. The changes in viscoelastic properties have been shown to correlate with the changes in hardness values of oleogels. While the highest storage modulus and loss modulus were obtained from sunflower wax oleojel, the lowest storage modulus and loss modulus were observed for carnauba wax oleojel. Among all oleogel samples, SFC of carnauba wax oleogel remained constant at the temperature close to body temperature. 

___

  • 1. Öğütcü M, Yilmaz E. 2012. Margarinlere Alternatif Olabilecek Yeni Bir Ürün: Oleojeller-I. Dünya Gıda, 01, 68–73.
  • 2. Stortz TA, Zetzl AK, Barbut S, Cattaruzza A, Marangoni AG. 2012. Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technol, 24 (7), 151–154.
  • 3. Patel AR, Rajarethinem PS, Grędowska A, Turhan O, Lesaffer A, De Vos WH, De walle DV, Dewettinck K. 2014. Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food Funct, 5(4), 645–652.
  • 4. Zetzl AK, Marangoni AG, Barbut S. 2012. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct, 3(3), 327–337.
  • 5. Doan CD, Van de Walle D, Dewettinck K, Patel AR. 2015. Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal, and microstructural study. J Am Oil Chem Soc, 92(6), 801–811.
  • 6. Zetzl AK, Gravelle AJ, Kurylowicz M, Dutcher J, Barbut S, Marangoni AG. 2014. Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struc, 2 (1), 27–40.
  • 7. Jang A, Bae W, Hwang HS, Lee HG, Lee S. 2015. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chem, 187, 525–529.
  • 8. Mert B, Demirkesen I. 2016. Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem, 199, 809–816.
  • 9. Mert B, Demirkesen I. 2016. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT-Food Sci Technol, 68, 477–484.
  • 10. Öğütcü M, Arifoğlu N, Yılmaz E. 2015. Preparation and Characterization of Virgin Olive Oil-Beeswax Oleogel Emulsion Products. J Am Oil Chem Soc, 92(4), 459–471.
  • 11. Patel AR, Dewettinck K. 2015. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Euro J Lipid Sci Technol, 117(11), 1772–1781.
  • 12. Patel AR, Cludts N, Sintang MDB, Lesaffer A, Dewettinck K. 2014. Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct, 5(11), 2833–2841.
  • 13. Yılmaz E, Öğütcü M. 2015. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct, 6(4), 1194–1204.
  • 14. Zulim Botega DC, Marangoni AG, Smith AK, Goff HD. 2013. The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. J Food Sci, 78(9), 1334–1339.
  • 15. Blake AI, Marangoni AG. 2015. Plant wax crystals display platelet-like morphology, Food Struc, 3, 30–34.
  • 16. Dassanayake LSK, Kodali DR, Ueno S, Sato K. 2009. Physical properties of rice bran wax in bulk and organogels. J Am Oil Chem Soc, 86 (12), 1163–1173.
  • 17. Hwang HS, Kim S, Evans KO, Koga C, Lee Y. 2015. Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struc, 5, 10–20.
  • 18. Rogers MA, Strober T, Bot A, Toro-Vazquez JF, Stortz T, Marangoni AG. 2014. Edible oleogels in molecular gastronomy. Int J Gastro Food Sci, 2 (1), 22–31.
  • 19. Toro-Vazquez JF, Mauricio-Pérez R, González-Chávez MM, Sánchez-Becerril M, de Jesús Ornelas-Paz J, Pérez-Martínez JD. 2013. Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Res Int, 54 (2), 1360–1368.
  • 20. Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Alonzo-Macías M, González-Chávez MM. 2007. Thermal and textural properties of oleogels developed by candelilla wax in safflower oil. J Am Oil Chem Soc, 84, 989–1000.
  • 21. Bemer HL, Limbaugh M, Cramer ED, Harper WJ, Maleky F. 2016. Vegetable organogels incorporation in cream cheese products. Food Res Int, 85, 67–75.
  • 22. Blake AI, Marangoni AG. 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J Am Oil Chem Soc, 91 (6), 885–903.
  • 23. Blake AI, Marangoni AG. 2015. The use of cooling rate to engineer the microstructure and oil binding capacity of wax crystal networks. Food Biophys, 10 (4), 456–465
  • 24. AOCS. 1989. Official methods and recommended practices of the American oil chemists’ society, Method Cd 16b-93. Champaign, IL, USA.
  • 25. Hwang HS, Kim S, Singh M, Winkler-Moser JK, Liu SX. 2012. Organogel formation of soybean oil with waxes. J Am Oil Chem Soc, 89 (4), 639–647.
  • 26. Dassanayake LSK, Kodali DR, Ueno S, Sato K. 2009. Physical properties of rice bran wax in bulk and organogels. J Am Oil Chem Soc, 86 (12), 1163–1173.