BAKTERİYOFAJ ENKAPSÜLASYONU VE POTANSİYEL UYGULAMALARI

Enkapsülasyon, aktif olan maddenin çevresinde uygun kaplama materyali ile koruyucu bir zar oluşturulması temeline dayanmaktadır. Gıda endüstrisinde mikroenkapsülasyon istenen bileşenin dış etkenlere karşı korunması, bazı özelliklerinin sürdürülebilmesi, kolay taşınması, tat ve koku maskeleme, oluşabilecek reaksiyonların önüne geçme gibi amaçlarla kullanılmasına rağmen koruyucu ve tedavi amaçlı fajların enkapsülasyonunun da oldukça etkili bir yöntem olarak uygulanabildiği bilinmektedir. Bakteriyofajlar 20. yüzyılın başlarından beri bakteriyel enfeksiyonlara karşı koruma ve tedavi amacıyla kullanılmış ancak artan antibiyotik tüketimi, fajların tedavi amaçlı kullanımının önüne geçmiştir. En önemli özelliği yüksek spesifitesi olan bakteriyofajlar, çiftlik hayvanlarında patojen kolonizasyonunun azaltılması (faj tedavisi), çiğ süt, et ve taze gıdalarda dekontaminasyon (biyokontrol), ekipman yüzeylerinde sanitasyon (biyosanitasyon), hazır gıdalarda raf ömrü uzatmak (biyoprezervasyon) amacıyla uygulanabilen etkin bir yöntem olarak karşımıza çıkmaktadır. Bakteriyofaj enkapsülasyon uygulamalarında, fonksiyonel kaplama uygulamalarındaki gelişmelere paralel olarak daha uygun maliyetli ve daha uzun süre muhafaza edilebilen mikrokapsül teknolojilerinin geliştirilmesine ihtiyaç duyulmaktadır.

BACTERIOPHAGE ENCAPSULATION AND POTENTIAL APPLICATIONS

Encapsulation based on forming a protective membrane around the active substance with a suitable coating material. Although microencapsulation is applied for such purposes as protection to some component against external influences, maintain some features, easy handling, flavor and odor masking, blocking some reactions, it is known that the phage encapsulation can be applied highly effective method for the purpose of pretention and treatment. Since the early 20th century, bacteriophages are used for prevention and treatment against bacterial infections but increasing the consumption of antibiotics has prevented to use of phages for treatment. Bacteriophages which is the most important feature high specificity emerges an effective method in order to reduction of pathogen colonization in farm animals (phage therapy), decontamination of raw milk, meat and fresh food (biocontrol), sanitation of equipment surfaces (biosanitation), extend shelf life of prepared foods (biopreservation). It is needed to develop microcapsule technology which is more cost effective and longer stored in parallel with developments of functional coating applications.

___

  • 1. Brussow H, Kutter E. 2005. Phage Ecology. In: Bacteriophages: Biology and applications, Florida, pp. 129-163.
  • 2. Coşkun, M.Y. 2003. Bakteriyofaj Tedavisi. Bilim ve Teknik. 474 (5): 82-85. Coşkun MY. olmalı Diğerleri de böyle düzeltilmeli
  • 3. Ackermann H.W. 2007. 5500 Phages examined in the electron microscope. Arch. Virol, 152, 227-243.
  • 4. Seçkin, A.K., Baladura, E. 2010. Gıdaların Muhafazasında Bakteriyosin ve Bakteriyofaj Uygulamaları. GIDA, 35(6): 461-467. Seçkin AK, Baladura E.
  • 5. Chibeu, A. 2013. Bacteriophages in food safety. Microbial pathogens and strategies for combating them: science, technology and education, Formatex.
  • 6. Wittebole, X., De Roock, S., Opal, S.M. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5, 226-235.
  • 7. Dewaal, C.S., Grooters, S.V. 2013. Antibiotic resistance in foodborne pathogens. Center for Sci Publ Intrest, May.
  • 8. Sillankorva, S. M., Oliverira, H., Azeredo, J. 2012. Bacteriophages and their role in food safety. Int J Microbiol, 863-945. Dergi isimleri italik yazılmalı
  • 9. Temelli, S. ve Çetin, E. 2011. Gıdalarda Patojen Kontrolünde Bakteriyofaj Kullanımı. Uludağ Üniv. J. Fac. Vet. Med. 30(2), 45-52.
  • 10. Loc-Carrillo, C. and Abedon, S. T. 2011. Pros and Cons of phage therapy. Bacteriophage, 1, 111-114.
  • 11. Endersen, L., O'Mahony, J., Hill, C., Ross, P., McAuliffe, O., Coffey, A. 2014. Phage therapy in the food industry. Annual Review of Food Science and Technology, 5, 327-349.
  • 12. Carvalho, C.M., Santos, S.B., Kropinski, A.M., Ferreira, E.C., Azeredo, J. 2012. Phages as therapeutic tools to control major foodborne pathogens: Campylobacter and Salmonella. In: Bacteriophages, pp.180-214.
  • 13. W. E. Huff, G. R. Huff, N. C. Rath et al. 2002. Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). Poult Sci, vol. 81(4), 437–441.
  • 14. Poshadri, A. and Aparna, K. 2010. Microenkapsulation Technology: A Rewiew. J.Res. ANGRAU 38(1), 86-102.
  • 15. Çakır, İ. 2007. Fonksiyonel Gıda Bileşenleri ve Probiyotiklerde Mikroenkapsülasyon Uygulamaları. 5. Gıda Mühendisliği Kongresi, 08-10 Kasım, Ankara.
  • 16. Ünal, E. ve Erginkaya, Z. 2010. Probiyotik Mikroorganizmaların Mikroenkapsülasyonu. GIDA, 35(4), 297-304.
  • 17. Gouin, S. 2004. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Sci and Technol, 15, 330-347.
  • 18. Choinska-Pulit, A., Mitula, P., Sliwka, P., Laba, W., Skaradzinska, A. 2015. Bacteriophage encapsulation: Trends and potential applications. Trends in Food Sci & Technol 45, 212-221.
  • 19. Burgain, J., Gaiani, C., Linder, M., Scher, J. 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Engineering, 104 (4), 467–483.
  • 20. Sakai, S. and Kawakami, K. 2010. Development of subsieve-size capsules and application to cell therapy. Advances in Experimental Med and Biol, 670, 22-30.
  • 21. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R. 2007. Application of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40, 1107–1121.
  • 22. Koç, M., Sakin, S. Ertekin, F.K. 2010. Mikroenkapsülasyon ve Gıda Teknolojisinde Kullanımı. Pamukkale Üniversitesi. Mühendislik Bilimleri Dergisi, 16(1), 77-86.
  • 23. Özcan, T. ve Altun, B. 2013. Süt Ürünlerinde Probiyotik Bakterilerin Mikroenkapsülasyonu I: Enkapsülasyon Teknikleri. U. Ü. Ziraat Fakültesi Dergisi 27(2), 93-104.
  • 24. Burgain, J., Corgneau, M., Scher, J. Gaiani, C. 2015. Encapsulation of Probiotics in Milk Protein Microcapsules. In: Microencapsulation and Microspheres for Food Applications. Chapter 20. France, pp. 391-406.
  • 25. Burgain, J., Gaiani, C., Linder, M, Scher, J. 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Engineering, 104 (4), 467–483.
  • 26. Li, R., Zhang, Y., Polk, D.B., Tomasula, P.M., Yan, F., Liu, L. 2016. Preserving viability of Lactobacillus rhamnosus GG in vitro andin vivo by a new encapsulation system. J Control Release, 230(28), 79-87.
  • 27. Gökmen, S., Palamutoğlu, R., Sarıçoban, C. 2012. Gıda Endüstrisinde Enkapsülasyon Uygulamaları. Gıda Teknolojileri Elektronik Dergisi, 7(1), 36-50.
  • 28. Venkata Naga Jyothi, N., Muthu Prasanna, P., Narayan Sakarkar, S. K., Prabha, S., Seetha Ramaiah, P., & Srawan, G. Y. 2010. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul, 27(3), 187-197.
  • 29. Campos, D. C., Acevedo, F., Morales, E., Aravena, J., Amiard, V., Jorquera, M. A., et al. 2014. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World J Microbiol and Biotechnol, 30, 2371-2378.
  • 30. Gbassi, G. K. and Vandamme, T. 2012. Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharm, 4, 149-163.
  • 31. O'Riordan, K., Andrews, D., Buckle, K., Conway, P. 2001. Evaluation of microencapsulation of a bifidobacterium strain with starch as an approach to prolonging viability during storage. J Appl Microbiol, 91, 1059-1066.
  • 32. Müller-Merbach, M., Rauschner, T., Hinrichs, J. 2005. Inactivation of bacteriophages by thermal and high-pressure treatment. Int Dairy J, 15, 777-784.
  • 33. Matinkhoo, S., Lynch, K. H., Dennis, J. J., Finlay, W. H., Vehring, R. 2011. Spraydried respirable powders containing bacteriophages for the treatment of pulmonary infections. J Pharm Sci, 100, 5197-5205.
  • 34. Vandenheuvel, D., Singh, A., Vandersteegen, K., Klumpp, J., Lavigne, R., Van den Mooter, G. 2013. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. European J Pharm and Biopharm, 84, 578-582.
  • 35. Vandenheuvel, D., Meeus, J., Lavigne, R., Van den Mooter, G. 2014. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix. Int J Pharm, 472, 202-205.
  • 36. Golec, P., Dabrowski, K., Hejnowicz, M., Gozdek, A., Ło_s, J. M., We˛grzyn, G., et al. 2011. A reliable method for storage of tailed phages. J Microbiol Meth, 88(3), 486-489.
  • 37. Vonasek, E., Le, P., Nitin, N. 2014. Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocolloids, 37, 7-13.
  • 38. Dini, C., Islan, G. A., de Urraza, P. J., & Castro, G. R. 2012. Novel biopolymer matrices for microencapsulation of phages: enhanced Protection against acidity and protease activity. Macromolecular Biosci, 12, 1200-1208.
  • 39. Tang, Z., Huang, X., Baxi, S., Chambers, J. R., Sabour, P. M., Wang, Q. 2013. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Research Int, 52, 460-466.
  • 40. Mortazavian, A., Razavi, S. H., Ehsani, M. R., Sohrabvandi, S. 2007. Principles and methods of microencapsulation of probiotic microorganisms. Iranian J Biotechnol, 5(1), 1-18.
  • 41. Chen, M.J., Chen, K.N., 2007. Applications of probiotic encapsulation in Dairy Products. In: Encapsulation and Controlled Release Technologies in Food Systems, Blacwell Publishing, U.S.A., pp. 83-112.
  • 42. Carvalho, C.M., Santos, S.B., Kropinski, A.M., Ferreira, E.C., Azeredo, J. 2012. Phages as therapeutic tools to control major foodborne pathogens: Campylobacter and Salmonella. In: Bacteriophages, Chapter 10, pp. 180-214.
  • 43. Ma, Y., Pacan, J. C., Wang, Q., Sabour, P. M., Huang, X., Xu, Y. 2012. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocolloids, 26, 434-440.
  • 44. Murthy, K., Engelhardt, R. 2012. Stabilized bacteriophage formulations. European Patent Appl, 2, 462-940.
  • 45. Raya, R.R., Oot, R.A., Moore-Maley, B., Wieland, S., Callaway, T.R. 2011. Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157:H7 levels in sheep guts. Bacteriophage, 1(1), 15–24.
  • 46. Lim, T.H., Lee, D.H., Lee, Y.N., et al. 2011. Efficacy of bacteriophage therapy on horizontal transmission of Salmonella Gallinarum on commercial layer chickens. Avian Diseases, 55(3), 435–438.
  • 47. Abuladze, T., Li, M., Menetrez, M.Y., Dean, T., Senecal, A. and Sulakvelidze, A. 2008. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl and Environ Microbiol, 74(20) 6230–6238.
  • 48. Sharma, M., Patel, J.R., Conway, W.S., Ferguson, S., Sulakvelidze, A. 2009. “Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce,” J Food Protect, 72(7) 1481–1485.
  • 49. Viazis, S., Akhtar, M., Feirtag, J., Diez-Gonzalez, F. 2011. Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol, 145(1), 37–42.
  • 50. Bigwood, T., Hudson, J.A., Billington, C., Carey-Smith, G.V., Heinemann, J.A. 2008. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol, 25(2),400–406.
  • 51. Pao, S., Randolph, S.P., Westbrook, E. W., Shen, H. 2004. Use of bacteriophages to control Salmonella in experimentally contaminated sprout seeds. J Food Sci, 69(5),127–130.
  • 52. Leverentz, B., Conway, W. S., Alavidze, Z. et al. 2001. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Protect, 64(8), 1116–1121.
  • 53. Spricigo, D.A., Bardina, C., Cortes, P., Lagostera, M. 2013. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol, 16(5),169–174.
  • 54. Hong, Y., Pan, Y. and Ebner, P.D. 2014. Meat Science and Muscle Biology Symposium: Development of bacteriophage treatments to reduce Escherichia coli O157:H7 contamination of beef products and produce. November 24.
  • 55. Guenther S., Herzig O., Fieseler L., Klumpp J., Loessner M.J. 2012. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol, 154, 66-72.
  • 56. Modi, R., Hirvi, Y., Hill, A., Griffiths, M. W. 2001. Effect of phage on survival of Salmonella Enteritidis during manufacture and storage of Cheddar cheese made from raw and pasteurized milk. J Food Protect, 64(7), 927–933.
  • 57. Hungaro, M.H., Santos Mendonca, R.C., Gouvea, D.M., Danata Vanetti, M.C., Oliveira Pinto, C.L. 2013. Use of bacteriophage to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res Int., 52, 75-81.
  • 58. Guenther S., Loessner M.J. 2011. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage, 1, 94-100.
  • 59. Bigot, B., Lee, W. J., McIntyre, L., et al. 2011. Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol, 28(8), 1448–1452.