GIDA KAYNAKLI ENTEROKOKLARIN POTANSİYEL RİSK FAKTÖRLERİ

Enterokoklar insan ve hayvan sindirim sisteminin yanı sıra çevresel kaynaklardan da izole edilebilen laktik asit bakterileridir (LAB). Enterokoklar farklı sıcaklık ve pH derecelerine dayanıklı olmalarının yanında ekstrem tuz konsantrasyonunda da gelişebilme yeteneklerinden dolayı fermente gıdalardan yüksek sıklıkla izole edilirler. Enterokoklar sahip oldukları çeşitli teknolojik özellikleri sayesinde geleneksel fermente gıdaların tipik tat ve aromasının geliştirilmesinde uzun yıllardır yaygın olarak kullanılmakta ayrıca ürünlerin raf ömrünün uzatılmasına da katkı sağlamaktadırlar. Çeşitli yararlı özelliklere sahip olmalarına rağmen enterokoklar, artan antibiyotik direnci, çeşitli hastalıklara sebep olan virülens faktörlere sahip olmaları, biyofilm ve biyojen amin üretme özellikleri nedeniyle insan sağlığı açısından ciddi risk oluşturmaktadırlar. Bu derlemede enterokokların antibiyotik direnç mekanizmaları, çeşitli virülens faktörleri ile biyofilm ve biyojen amin üretme özellikleri irdelenmeye çalışılmıştır. 

POTENTIAL RISK FACTORS OF FOOD ORIGINATED ENTEROCOCCI

Enterocooci are lactic acid bacteria (LAB), isolated from human and animal digestive tract in addition environmental sources. Enterococci are often isolated from fermented foods because of resistant to different temperature and pH and also ability of growing at extreme salt concentration. Enterococci have been used in traditional fermented food products to improve their typical taste and aroma due to various technological properties for many years. They also contribute to increase of product’s shelf life. Although enterococci have various useful properties, they pose serious risk factors for human health due to incresing antibiotic resistance, to pose virulence factors that cause various diseases, production properties of biofilm and biogenic amines. In this review mechanism of antibiotic resistance, various virulence factors, biofilm and biogenic amine production properties of enterococci were attempted to be examined.

___

  • 1. Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, de Vuyst L. 2006. The role and application of enterococci in food and health. Int J Food Microbiol, 106: 1-24.
  • 2. Franz CM, Huch M, Abriouel H, Holzapfel W, Galvez A. 2011. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol, 151: 125-140.
  • 3. Özden Tuncer B, Ay Z, Tuncer Y. 2013. Occurrence of enterocin genes, virulence factors, and antibiotic resistance in 3 bacteriocin-producer Enterococcus faecium strains isolated from Turkish Tulum Cheese. Turk J Biol, 37: 443-449.
  • 4. Morandi S, Silvetti T, Miranda Lopez JM, Brasca M. 2015. Antimicrobial activity, antibiotic resistance and the safety of lactic acid bacteria in raw milk Valtellina Casera Cheese. J Food Safety, 35: 193-205.
  • 5. Komprda T, Sladkova P, Petirova E, Dohnal V, Burdychova R. 2010. Tyrosine and histidine-decarboxylase positive lactic acid bacteria and enterococci in dry fermented sausages. Meat Sci, 86: 870-877.
  • 6. Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. 2013. Antibiotic resistant enterococci-Tales of a drug resistance gene trafficker. IJMM Int J Med Microbiol, 303: 360-379.
  • 7. Chajęcka-Wierzchowska W, Zadernowska A, Nalepa B, Laniewska-Trokenheim L. 2012. Occurrence and antibiotic resistance of enterococci in ready-to-eat food of animal origin. Afr J Microbiol Res, 6 (39): 6773-6780.
  • 8. Tuncer Y. 2009. Some technological properties of phenotypically identified enterococci strains isolated from Turkish Tulum Cheese. Afr J Biotechnol, 8 (24): 7008-7016.
  • 9. Yoğurtçu NN, Tuncer Y. 2013. Antibiotic susceptibility patterns of Enterococcus strains isolated from Turkish Tulum Cheese. Int J Dairy Technol, 66 (2): 236-242.
  • 10. Yüceer Ö, Özden Tuncer B. 2015. Determination of antibiotic resistance and biogenic amine production of lactic acid bacteria isolated from fermented Turkish Sausage (Sucuk), J Food Safety, 35: 276-285.
  • 11. ECDC. 2011. Annual Epidemiological Report on Communicable Diseases in Europe, Stockholm, SE.
  • 12. Tanasupawat S, Sukontasing S, Lee JS. 2008. Enterococcus thailandicus sp. nov., isolated from fermented sausage ('mum') in Thailand. Int J Syst Evol Microbiol, 58: 1630-1634.
  • 13. Dahlén G, Blomqvist S, Almståhl A, Carlén A. 2012. Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections. J Oral Microbiol, 4: 10855. DOI: 10.3402/jom.v4i0.10855
  • 14. Shalaby AR. 1996. Significance of biogenic amines to food safety and human health. Food Res Int, 29: 675-690.
  • 15. Ladero V, Calles Enríquez M, Fernández M, Alvarez MA, 2010. Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci, 6: 145-156.
  • 16. Talon R, Leroy S. 2011. Diversity and safety hazards of bacteria involved in meat fermentations. Meat Sci, 89: 303-309.
  • 17. Garrido AM, Gálvez A, Pulido RP. 2014. Antimicrobial resistance in enterococci. J Infect Dis Ther, 2 (4): doi: 10.4172/2332-0877.1000150.
  • 18. Fisher K, Phillips C. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology, 155 (6): 1749-1757.
  • 19. Getachew Y, Hassan L, Zakaria Z, Zaid CZM, Yardi A, Shukor RA, Marawin LT, Embong F, Aziz SA. 2012. Characterization and risk factors of vancomycin-resistant enterococci (VRE) among animal-affiliated workers in Malaysia. J Appl Microbiol, 113: 1184-1195.
  • 20. Jung WK, Lim JY, Kwon NH, Kim JM, Hong SK, Koo HC, Kim SH, Park YH. 2007. Vancomycin-resistant enterococci from animal sources in Korea. Int J Food Microbiol, 113: 102-107.
  • 21. Chan YY, Nasir MHBA, Yahaya MAB, Salleh NMAB, Dan ADBM, Musa AMB, Ravichandran M. 2008. Low prevalence of vancomycin and bifunctional aminoglycoside-resistant enterococci isolated from poultry farms in Malaysia. Int J Food Microbiol, 122: 221-226.
  • 22. Cogliani C, Goossens H, Greko C. 2011. Restricting antimicrobial use in food animals: lessons from Europe. Banning nonessential antibiotic uses in food animals is intended to reduce pools of resistance genes. Microbe, 6 (6): 274-279.
  • 23. Marshall BM, Levy SB. 2011. Food animals and antimicrobials: Impacts on human health. Clin Microbiol Rev, 24: 718-732.
  • 24. Frye JG, Lindsey RL, Meinersmann RJ, Berrang ME, Jackson CR, Englen MD, Turpin JB, Fedorka-Cray JP. 2011. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. Foodborne Pathog Dis, 8: 663-679.
  • 25. Harada T, Kawahara R, Kanki M, Taguchi M, Kumeda Y. 2012. Isolation and characterization of vanA genotype vancomycin-resistant Enterococcus cecorum from retail poultry in Japan. Int J Food Microbiol, 153: 372-377.
  • 26. Glenn LM, Englen MD, Lindsey RL, Frank JF, Turpin JE, Berrang M E, Meinersmann RJ, Fedorka-Cray PJ, Frye, JG. 2012. Analysis of antimicrobial resistance genes detected in multiple-drug- resistant Escherichia coli isolates from broiler chicken carcasses. Microb Drug Resist, 18: 453-463.
  • 27. Courvalin P. 2006. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis, 42 (1): 25-34.
  • 28. Kristich CJ, Rice LB, Arias CA. 2014, Enterococcal Infection-Treatment and Antibiotic Resistance. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection, Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N. (Ed.), Massachusetts Eye and Ear Infirmary, Boston. http://www.ncbi.nlm.nih.gov/books/NBK190424/ (Erişim tarihi Ocak 2016).
  • 29. Huycke MM, Sahm DF, Gilmore MS. 1998. Multiple-drug resistant enterococci: The nature of the problem and an agenda for the future. Emerg Infect Dis, 4 (2): 239-249.
  • 30. Templer SP. 2006. Antibiotic Resistant Enterococci From Food and Clinical Samples: Microbiological Characterization, Moleculer Typing and Genetic Relation of Strains. Inauguraldissertation der Philosophischnaturwissenschaftlichen Fkultät der Universität Bern, M. Sc. Thesis, Zürich 72 p.
  • 31. Chow JW. 2000. Aminoglycoside resistance in enterococci. Clin Infect Dis, 31: 586-589.
  • 32. Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. 2012. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS one, 7 (1): 1-10.
  • 33. Ribeiro T, Oliveira M, Fraqueza MJ, Laukova A, Elias M, Tenreiro R, Barreto AS, Semedo-Lemsaddek T. 2011. Antibiotic resistance and virulence factorsamong enterococci isolated from chourico, a traditional Portuguese dry fer-mented sausage. J Food Prot, 74: 465-469.
  • 34. Jamet E, Akary E, Poisson MA, Chamba JF, Bertrand X, Serror P. 2012. Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiol, 31: 191-198.
  • 35. Aslam M, Diarra MS, Checkley S, Bohaychuk V, Masson L. 2012. Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolatedfrom retail meats in Alberta, Canada. Int J Food Microbiol, 156: 222-230.
  • 36. Pechère JC. 2001. Macrolide resistance mechanisms in Gram-positive cocci. Int J Antimicrob Agents, 18: 25-28.
  • 37. Martel A, Meulenaere V, Devriese LA, Decostere A, Haesebrouck F. 2003. Macrolide and lincosamide resistance in the Gram-positive nasal and tonsillar flora of pigs. Microb Drug Resist, 9: 293-297.
  • 38. Jaglic Z, Vlkova H, Bardon J, Michu E, Cervinkova D, Babak V. 2012. Distribution, characterization and genetic bases of erythromycin resistance in staphylococci and enterococci originating from livestock. Zoonoses Public Health, 59 (3): 202-211.
  • 39. Aarestrup FM, Agerso Y, Gerner Smidt P, Madsen M, Jensen LB. 2000. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis, 37: 127-137.
  • 40. Leclercq R. 1997. Enterococci acquire new kinds of resistance. Clin Infect Dis, 24: 80-84.
  • 41. Kristich CJ, Little JL, Hall CL, Hoff J.S. 2011. Reciprocal regulation of cephalosporin resistance in Enterococcus faecalis. mBio, 2 (6): e 00199-11.
  • 42. Werner G, Fleige C, Ewert B, Laverde Gomez JA, Klare I, Witte W. 2010. High-level ciprofloxacin resistance among hospital-adapted Enterococcus faecium (CC17). Int J Antimicrob Agents, 35 (2): 119-125.
  • 43. Palmer KL, Daniel A, Hardy C, Silverman J, Gilmore M.S. 2011. Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother, 55 (7): 3345-3356.
  • 44. Mascher T, Helmann JD, Unden G. 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev, 70 (4): 910-938.
  • 45. Jung YH, Shin ES, Kim O, Yoo JS, Lee KM, Yoo JI, Chung GT, Lee YS. 2010. Characterization of two newly identified genes, vgaD and vatG, conferring resistance to streptogramin A in Enterococcus faecium. Antimicrob Agents Chemother, 54 (11): 4744-4749.
  • 46. Valenzuela, AS, Lerma, LL, Benomar N, Gálvez A, Pulido, RP, Abriouel H. 2013. Phenotypic and molecular antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium isolated from different traditional fermented foods. Foodborne Pathog Dis, 10: 143-149.
  • 47. Diekema DJ, Jones RN. 2001. Oxazolidinome antibiotics. Lancet, 358: 1975-1982.
  • 48. Jones RN, Della Latta P, Lee LV, Biedenbach DJ. 2002. Linezolid-resistant Enterococcus faecium isolated from a patient without prior exposure to an oxazolidinone: Report from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis, 42 (2): 137-139.
  • 49. Roberts, MC, Schwarz S. 2009. Tetracycline and chloramphenicol resistance mechanisms. Mayers, ML (ed.), Antimicrobial drug resistance.183-193.
  • 50. Busani L, Del Grosso M, Paladini C, Graziani C, Pantosti A, Biavasco F, Caprioli A. 2004. Antimicrobial susceptibility of vancomycin-susceptible and resistant enterococci isolated in Italy from raw meat products, farm animals, and human infections. Int J Food Microbiol, 97: 17-22.
  • 51. Ben Omar N, Castro A, Lucas R, Abriouel H, Yousif NM, Franz CM, Holzapfel WH, Pérez-Pulido R, Martínez Caňamero M, Gálvez A. 2004. Functional and safety aspects of enterococci isolated from different Spanish foods. Syst Appl Microbiol, 27, 118-130.
  • 52. Willems RJ, Bonten MJ. 2007. Glycopeptide resistant enterococci: deciphering virulence, resistance and epidemicity. Curr Opin Infect Dis, 20: 384-390.
  • 53. İnoğlu Z, Tuncer Y. 2013. Safety assessment of Enterococcus faecium and Enterococcus faecalis strains isolated from Turkish Tulum Cheese. J Food Saf, 33: 369-377.
  • 54. Koch S, Hufnagel M, Theilacker C, Huebner J. 2004. Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22: 822-830.
  • 55. Hällgren A, Claesson C, Saeedi B, Monstein HJ, Hanberger H, Nilsson LE. 2008. Molecular detection of aggregation substance, enterococcal surface protein, and cytolysin genes and in vitro adhesion to urinary catheters of Enterococcus faecalis and E. faecium of clinical origin. Int J Med Microbiol, 299 (5): 323-332
  • 56. Eaton TJ, Gasson MJ. 2002. A variant enterococcal surface protein Espfm in Enterococcus faecium; distribution among food, commensal, medical, and environmental isolates. FEMS Microbiol Lett, 216: 269-275.
  • 57. Sartingen S, Rozdzinski E, Muscholl Silberhorn A, Marre R. 2000. Aggregation substance increases adherence and internalization but not translocation of Enterococcus faecalis through different intestinal epithelial cells in vitro. Infect Immun, 68 (10): 6044-6047.
  • 58. Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore MS, Charbonnè F, Joly B. 2002. ln vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res Microbiol,15: 375-380.
  • 59. Shankar V, Baghdayan AS, Huycke M, Lindahl G, Gilmore M. 1999. Infection derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun, 67: 193-200.
  • 60. Toledo Arana A, Valle J, Solano C, Arrizubieta Cuceralla, C, Lamata M, Amorena B, Leiva J, Penadés JR, Lasa I. 2001. The enterococcal surface protein, Esp, is Involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol, 67 (10): 4538-4545.
  • 61. Borgmann S, Niklas DM, Klare I, Zabel LT, Buchenau P, Autenrieth IB, Heeg P. 2004. Two episodes of vancomycin resistant Enterococcus faecium outbreaks caused by two genetically different clones in a newborn intensive care unit. Int J Hyg Environ Health, 207: 386-389.
  • 62. Latasa C, Solano C, Penadés JR, Lasa I. 2006. Biofilmassociated proteins. C R Biol, 329 (11): 849-857.
  • 63. Fernandes SC, Dhanashree B. 2013. Drug resistance virulence determinants in clinical isolates of Enterococcus species. Indian J Med Res, 137 (5): 981-985.
  • 64. Kayaoglu G, Ørstavik D. 2004. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med, 15: 308-320.
  • 65. Billström H, Lund B, Sullivan A, Nord CE. 2008. Virulence and antimicrobial resistance in clinical Enterococcus faecium. Int J Antimicrob Agents, 32 (5): 374-377.
  • 66. Worth LJ, Slavin MA, Vankerckhoven V, Goossens H, Grabsch EA, Thursky KA. 2008. Virulence determinants in vancomycin-resistant Enterococcus faecium vanB: clonal distribution, prevalence and significance of esp and hyl in Australian Patients with haematological disorders. J Hosp Infect, 68 (2): 137-144.
  • 67. Devriese LA, Baele M, Butaye P. 2006. The genus Enterococcus: taxonomy. Prokaryotes, 4: 163-174.
  • 68. Solheim M, Aakra Å, Snipen LG, Brede DA, Nes I. 2009. Comparative genomics of Enterococcus faecalis from healthy Norwegian infants. BMC Genomics, 10: 194-205.
  • 69. Valenzuela AS, Benomar N, Abriouel H, Cañamero MM, Gálvez A. 2010. Isolation and identification of Enterococcus faecium from seafoods: Antimicrobial resistance and production of bacteriocin-like substances. Food Microbiol, 27: 955-961
  • 70. Perin LM, Miranda RO, Todorov SD, de Melo Franco BDG, Nero LA. 2014. Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int J Food Microbiol 185: 121-126.
  • 71. Trivedi K, Cupakova S, Karpiskova R. 2011. Virulence factors and antibiotic resistance in enterococci isolated from food-stuffs. Vet Med, 56 (7): 352-357.
  • 72. Costerton JW. 2001. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol, 9: 50-52.
  • 73. Mohamed JA, Huang DB. 2007. Biofilm formation by enterococci. J Med Microbiol, 56: 1581-1588.
  • 74. Lewis K. 2001. Riddle of biofilm resistance. Antimicrob Agents Chemother, 45: 999-1007.
  • 75. Pillai SK, Sakoulas G, Eliopoulos GM, Moellering Jr RC, Murray BE, Inouye RT. 2004. Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J Infect Dis, 190: 967-970.
  • 76. Xu Y, Singh KV, Qin X, Murray BE, Weinstock GM. 2000. Analysis of gene cluster of Enterococcus faecalis involved in polysaccharide biosynthesis. Infect Immun, 68 (2): 815-823.
  • 77. Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE. 2004. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun, 72: 3658-3663.
  • 78. Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J. 2006. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun, 74 (7): 4164-4171.
  • 79. Nallapareddy SR, Singh KV, Sillanpää J, Garsin DA, Höök M, Erlandsen SL, Murray BE. 2006. Endocarditis and biofilm associated pili of Enteroccus faecalis. J Clin Investig, 116: 2799-2807.
  • 80. Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. 2004. Enterococcal surface protein Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun, 72: 6032-6039.
  • 81. Bardöcz S. 1995. Polyamines in food and their consequences for food quality and human health. Trends Food Sci Technol, 6: 341-346.
  • 82. Santos S, 1996. Biogenic amines: their impotance in foods. Int J Food Microbiol, 29: 213-231.
  • 83. Gingerich TM, Lorca T, Flick GJ, Pierson MD, Mc Nair HM. 1999. Biogenic amine survey and organoleptic changes in fresh stored and temperature abused bluefish. J Food Protect, 62: 1033-1037.
  • 84. Fadhlaoui-Zid K, Curiel JA, Landeta G, Fattouch S, Reverón I, de las Rivas B, Sadok S, Muñoz R. 2012. Biogenic amine production by bacteria isolated from ice-preserved sardine and mackerel. Food Control, 25: 89-95.
  • 85. Halász A, Baráth Á, Simon Sarkadi L, Holzapfel W. 1994. Biogenic amines and their production by microorganisms in food. Trends Food Sci Technol, 5: 42-49.
  • 86. Alvarez MA, Moreno Arribas MV. 2014. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci Technol, 39: 146-155.
  • 87. Ladero V, Sánchez Llana E, Fernández M, Alvarez MA. 2011. Survival of biogenic amine-producing dairy LAB strains at pasteurisation conditions. Int J Food Sci Technol, 46: 516-521.
  • 88. Linares DM, Martín C, Ladero V, Alvarez MA, Frenández M. 2011. Biogenic amines in dairy products. Crit Rev Food Sci Nutr, 51: 691-703.
  • 89. Ladero V, Fernández M, Calles Enríquez M, Sánchez Llana E, Cañedo E, Martín MC, Alvarez MA. 2012. Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol, 30: 132-138.
  • 90. Lorencová E, Buňková L, Matoulková D, Dráb V, Pleva P, Kubáň V, Buňka F. 2012. Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer. Int J Food Sci Technol, 47: 2086-2091.
  • 91. Capozzi V, Ladero V, Beneduce L, Fernández M, Alvarez MA, Benoit B, Laurent, B, Grieco F, Spano G. 2011. Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol, 28: 434-439.
  • 92. Jiménez E, Ladero V, Chico I, Maldonado Barragán A, López M, Martín V, Fernández L, Fernández M, Álvarez MA, Torres C, Rodríguez JM. 2013. Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol, 13 (288):1-12.
  • 93. Kučerová K, Svobodová H, Tůma Š, Ondráčková I, Plocková M. 2009. Production of biogenic amines by enterococci. Czech J Food Sci, 27: 50-55.
  • 94. Lu S, Xu X, Zhou G, Zhu Z, Meng Y, Sun Y. 2010. Effect of starter cultures on microbial ecosystem and biogenic amines in fermented sausage. Food Control 21: 444-449.
  • 95. Muñoz Atienza E, Landeta G, de Las Rivas B, Gómez Sala B, Muñoz R, Hernández PE, Cintas LM, Herranz C. 2011. Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. Int J Food Microbiol, 146: 212-216.
  • 96. Kalhotka L, Cwiková O, Čírtková Kovářová V, Matoušovál Z, Přichystalová J. 2012. Changes in counts of microorganisms and biogenic amines production during the manufacture of fermented sausages Poličan. J Microbiol Biotech Food Sci, 2 (2): 667-683.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR