SARS-CoV-2’nin genom organizasyonu

Coronaviridae ailesi Orthocoronavirinae ve Letovirinae olmak üzereiki alt aileden oluşmaktadır. Orthocoronavirinae alt ailesi serolojikve genetik özelliklerine göre alfa, beta, gamma ve delta olmak üzere4 ayrı genusta (cins) incelenmektedir. Coronaviridae ailesinde yeralan viruslar zarflı, 80-220 nm boyutunda ve pleomorfik yapıda olmalarına rağmen, çoğunlukla küresel görünüm sergilemektedir. Buviruslar 20 nm uzunluğunda belirgin ve taç şeklinde trimer spike adıverilen yüzey çıkıntılarına sahiptir. Coronaviruslar büyük RNA genomuna sahip olmaları nedeniyle mutasyon ve rekombinasyon türügenom değişimleri, bu viruslarda daha fazla görülmektedir. Özellikleyarasa CoV'larının doğada çok sayıda farklı konakçı türünde sirküleolabilmesi, rekombinasyon ve mutasyon oranının artmasına ve yenipatojen CoV'ların ortaya çıkmasına yol açabilmektedir. Coronavirusların çoğalması konak hücrenin sitoplazmasında gerçekleşmektedir.Bu viruslar replikasyon için ilk önce S proteini ile hücre yüzey reseptörlerine tutunurlar. CoV'un konakçıda enfeksiyon oluşturabilmesinde ve doku tropizminde temel belirleyici, virus S proteini ve konakhücre yüzey reseptörü arasındaki ilişkidir. SARS-CoV-2, Anjiyotensindönüştürücü enzim 2'nin (Angiotensin-converting enzyme 2 - ACE2)farklı bölgelerine bağlanmaktadır. ACE2, kardiak fonksiyonu ve kanbasıncının dengelenmesi için önemli bir hücre yüzeyi çinko-bağlayıcı karboksipeptidaz olarak tanımlanmaktadır. SARS-CoV-2'nin, yenibir pandeminin etiyolojik ajanı olarak tanımlanması ile birlikte yarasa kökenli Coronavirusların moleküler biyolojisi ve patogenezine yönelik ilgiyi bir kez daha uyandırmıştır. Bu çalışmalar SARS-CoV-2’yekarşı oldukça kısa bir süre içinde spesifik antiviral ajan ve aşılarıngeliştirilmesi için kullanılabilecek çok sayıda fonksiyonel ve yapısalbilgi üretmiştir

Genomic organization of SARS-CoV-2

The Coronaviridae family consists of two subfamilies Orthocoronavirinae and Letovirinae. Orthocoronavirinae subfamily is examined in 4 different genus (genus) as alpha, beta, gamma and delta according to their serological and genetic characteristics. Although the viruses in the Coronaviridae family are enveloped, 80-220 nm in size and pleomorphic, they mostly exhibit a spherical appearance. These viruses have prominent and crown-shaped surface protrusions called trimer spikes, 20 nm long. Since coronaviruses have a large RNA genome, genomic changes such as mutation and recombination are more common in these viruses. n particular, the fact that bat CoVs can circulate in many different host species in nature may lead to an increase in the rate of recombination and mutation and the emergence of new pathogen CoVs. The reproduction of coronaviruses takes place in the cytoplasm of the host cell. These viruses first attach to cell surface receptors with S protein for replication. The main determinant of CoV's ability to infect the host and tissue tropism is the relationship between virus S protein and host cell surface receptor. SARS-CoV-2 binds to different regions of angiotensin converting enzyme-2 (ACE2). ACE2 is defined as an important cell surface zinc-binding carboxypeptidase for cardiac function and balancing of blood pressure. With the identification of SARS-CoV-2 as a etiological agent of a new pandemic, it has once again aroused interest in the molecular biology and pathogenesis of bat-borne coronaviruses. These studies have produced a lot of functional and structural information that can be used for the development of specific antiviral agents and vaccines against SARS-CoV-2 in a very short time.

___

  • Bosch BJ, van der Zee R, de Haan CA, Rottier PJ, 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol, 77, 8801-8811.
  • Burrell C, Howard C, Murphy F, 2016. Fenner and White’s medical virology. Beşinci baskı, United States: Academic Press. Centers for Disease Control and Prevention (CDC), 2018. Severe Acute Respiratory Syndrome. https://www.cdc.gov/ sars/about/fs-sars Erişim tarihi: 20.12.2018.
  • Donoghue M, Hsieh F, Baronas E, Godbout K, et al., 2000. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 87 (1), 1–9.
  • Fan C, Li K, Ding Y, Lu W, et al., 2020. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. MedRxiv, In press.
  • Fehr AR, Perlman S, 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 1282, 1-23.
  • Greenwood D, Slack R, Barer M, Irving W, 2012. Medical Microbiology, Part 4: Viral Pathogenes and Associated Diseases, 18th Edition, Churchill Livingstone.
  • Harapan H, Itoh N, Yufika A, Winardi W, et al., 2020. Coronavirus disease 2019 (COVID-19). J Infect Public Health, 13(5), 667–673.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitör. Cell, 181, 271-280.
  • Intenational Committe on Taxonomy of Viruses (ICTV), 2020. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019- nCoV and naming it SARS-CoV-2. Nat Mic, 5, 536–544.
  • Jin Y, Yang H, Ji W, Wu W, et al., 2020. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 12 (4).
  • Kasibhatla SM, Kinikar M, Limaye S, Kale MM, et al., 2020. Understanding evolution of SARS-CoV-2: a perspective from analysis of genetic diversity of RdRp gene. J Med Virol, 92, 1932-1937.
  • Kirchdoerfer RN, Cottrell CA, Wang N, et al., 2016. Pre-fusion structure of a human coronavirus spike protein. Nat, 531(7592), 118-21.
  • Liu Z, Xiao X, Wei X, Li J, et al., 2020. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV-2. J Med Virol, 92(6), 595-601.
  • Maclachlan NJ, Dubovi EJ, 2017. Fenner's Veterinary Virology, Part II: Veterinary and Zoonotic Viruses, 5th Edition, United States, Academic Press, 435-461.
  • Malik YA, 2020. Properties of Coronavirus and SARS-CoV-2. Malaysian J Pathol, 42(1), 3–11.
  • Payne S, 2017. Viruses: From understanding to investigation. Chapter 17: Family Coronaviridae, Elsevier Inc. All rights reserved. Academic Press.
  • Sethna PB, Hofmann MA, Brian DA, 1991. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol, 65(1), 320-5.
  • Shereen MA, Khan S, Kazmi A, Bashir N, 2020. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Advanc Res, 24, 91–98.
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, et al., 2003. Unique and conserved features of genome and proteome of SARS coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol. Biol, 331, 991-1004.
  • Stertz S, Reichelt M, Spiegel M, Kuri T, et al., 2007. The intracellular sites of early replication and budding of SARS coronavirus. Virology, 361, 304-15.
  • Su S, Wong G, Shi W, Liu J, et al., 2016. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol, 24(6), 490-502.
  • Susan RW, Sonia N, 2005. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev, 69, 635-664.
  • Tang X, Wu C, Li X, Song Y, et al., 2020. On the origin and continuing evolution of SARS-CoV-2. National Sci Rev, 7(6), 1012-1023.
  • Tok TT, Tatar G, 2017. Structures and Functions of Coronavirus Proteins: Molecular Modeling of Viral Nucleoprotein. Int J Virol Infect Dis, 2(1), 1-7.
  • Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, et al., 2020. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med, 382(16), 1564- 1567.
  • Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, et al., 2015. Coronavirus envelope protein remains at the site of assembly. Virology, 478, 75-85.
  • Wang Y, Liu D, Shi W, Lu R, et al., 2015. Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis. MBio, 6(5), 1-6.
  • Woo P.C, Lau S.K, Huang Y, Yuen K.Y, 2009. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol and Med, 234(10), 1117-1127.
  • Xu H, Zhong L, Deng J, Peng J, et al., 2020. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci, 12(8), 1-5.
  • Yi Y, Lagniton PNP, Ye S, Li E et al., 2020. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci, 16 (10), 1753-1766.
  • Yu W, Tang G, Zhang L, Corlett R.T, 2020. Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data. Zool Res, 41(3), 247–257.