Globalization and Identity in Mathematics Education Research: An Essay

Bu makalede matematik eğitiminde araştırma ve geliştirmenin küreselleşmesi eleştirel açıdan tartışılmaktadır. Makale; alanda kullanılan dil ve yöntemin ülkelerarası iletişimde istenilen standardı sağladığı müddetçe anlamlı olduğu tezi savunulmaya çalışılmakta, öte yandan, alanda oluşmaya başlayan tektipleşmenin batı dışı ulusların ya da kimi yerel dünya görüşlerinin, kültürel, ekonomik, dil ve coğrafi özelliklerinin bu alana yapabileceği katkılarının engellenmesine yolaçabileceği savunulmaktadır. Sonuçta, EJER okuyucusuna kendi toplumunun araştırma ihtiyacına duyarlı yerel dünya görüşlerinin avantajlarını belirlemeleri ve bu avantajları matematik eğitimi araştırma ve pratiğine katkı yapacak şekilde kullanmaları çağrısı yapılmaktadır.

Küreselleşme ve Matematik Eğitimi Araştırmalarında Kimlik Arayışı: Bir Deneme

This article critiques the current globalization of research and development in mathematics education. It makes the case that uniformity of language and method across the field is meaningful in that uniformity maintains standards of rigor and cross-national communication. On the other hand, uniformity may prevent the valuation of non-Western or indigenous worldviews, and may prevent the inclusion of the unique cultural, economic, linguistic and geographic characteristics of nations as serious objects for scholarship. In the end, a call is made to the readership of EJER to determine the advantages of a local worldview, sensitive to the needs of the researcher’s home community, and apply these advantages to improve mathematics education practice, at the same time as improving basic research.

___

  • Atweh, B., & Clarkson, P. (2001). Internationalisation and globalization of mathematics education: Toward an agenda for research/action. In B. Atweh, H. Forgasz, & B. Bebres (Eds.), Sociocultural research on mathematics education: An international perspective (pp. 77-94). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Carpenter, T. P., & Moser, J. M. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education, 15, 179-202.
  • Cobb, P., & Hodge, L. (2002). A relational perspective on issues of cultural diversity and equity as they play out in the mathematics classroom. Mathematical Thinking and Learning, 4, 249-284.
  • Cobb, P., Gravemeijer, K., Yackel, E., McClain, K., & Whitenack, J. (1997). Symbolizing and mathematizing: The emergence of chains of signification in one first-grade classroom. In D. Kirshner & J. A. Whitson (Eds.), Situated cognition theory: Social, semiotic, and neurological perspectives (pp. 151-233). Mahwah, NJ: Lawrence Erlbaum.
  • Dougherty, B. J., & Slovin, H. (2004). Generalized diagrams as a tool for young children’s problem solving. In M. J. Høines, & Fugelstad, A. B. (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 295-302). Bergin, Norway: Bergin University College
  • English, L. D. (2002). Priority themes and issues in international research in mathematics education. In L. D. English (Ed.), Handbook of International Research in Mathematics Education (pp. 3-15). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele Model of Thinking in Geometry among Adolescents. Journal for Research in Mathematics Education. Monograph #3. Reston, VA: National Council of Teachers of Mathematics.
  • Høines, M. J., & Fugelstad, A. B. (Eds.) (2004). Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education. Bergin, Norway: Bergin University College
  • Kuhn, T. (1962). The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press
  • Lesh, R., & Lovitts, B. (2000). Research agendas: Identifying priority problems, and developing useful theoretical perspectives. In A. Kelly & R. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 45-72). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lewis, C., Perry, R. & Hurd, J. (2004). A Deeper Look at Lesson Study. Educational Leadership, February,18-22.
  • Olkun, S., & Toluk, Z. (2002). Textbooks, Word Problems, and Student Success on Addition and Subtraction. International Journal of Mathematics Teaching and Learning. November 18. Article available online: http://www.ex.ac.uk/cimt/ijmtl/olkuntoluk.pdf
  • Rasmussen, C. & Zandieh, M. (2000). Defining as a mathematical activity: A realistic mathematics analysis. In M. Fernandez, Proceedings of the Twenty-Second Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 301-305). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
  • Schoenfeld, A. H. (2002). Research methods in (mathematics) education. In L. D. English (Ed.), Handbook of International Research in Mathematics Education (pp. 435-487). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Shavelson, R. J., & Town, L. Scientific Research in Education. Washington, DC: National Academy Press.
  • Sherman, J. D., Honager, S. D., McGivern, J. L., & Lemke, M. (2002). Comparative Indicators of Education in the United States and Other G-8 Countries: 2002. Washington, DC: National Center for Education Statistics.
  • Stanic, G. M. A., Kilpatrick, J. (Eds.) (2003). A History of School Mathematics (Vol. 1, pp. 753-818). Reston, VA: National Council of Teachers of Mathematics.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. Kelly & R. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Stevenson, H. W., & Nerison-Low, R. (1999). To Sum It Up: Case Studies of Education in Germany, Japan, and the United States. National Institute on Student Achievement, Curriculum, and Assessment: Office of Educational Research and Improvement, U.S. Department of Education.
  • Stokes, D. E. (1997). Pasteur’s Quadrant: Basic Science and Technological Innovation. Washington, DC: Brookings Institution Press.
  • Thorndike, E. (1922). The Psychology of Arithmetic. New York: Macmillan.