Fonksiyon Kavramının Anlaşılması: Tanımsal Özellikler ve Çoğul Temsiller

Bu çalışma matematiğin önemli kavramlarından fonksiyon kavramının lise 3 öğrencileri tarafından anlaşılmasını inceler. Bunu yaparken, kuramsal çatı fonksiyonların çoğul temsilleri ile fonksiyon tanımının kullanımı arasındaki ilişkiyi temel alır. Amaç öğrencilerin küme eşlemesi diyagramları, sıralı ikili kümeleri, grafikler ve denklemler gibi çoğul temsiller hakkında yorum yaparken tanımsal özellikleri kullanabilme becerilerini ortaya çıkarmaktır. Çalışmanın örneklemini 9 lise 3 öğrencisi oluşturmaktadır. Bu 9 öğrenci, Matematik, Türkçe – Matematik ve Sosyal gruplarından olmak üzere 114 lise 3 öğrencisine dağıtılan anketlerin sonuçlarına göre teorik örnekleme yöntemi ile seçilmiştir. Temel olarak niteliksel olan bu çalışmanın verileri bu 9 lise 3 öğrencisi ile yapılan yarı-yapılandırılmış mülakatlardan elde edilmiştir. Mülakatlarda öğrencilerden çeşitli temsillerin fonksiyon olup olmadığı hakkında yüksek sesle düşünmeleri ve verilen sabit bir fonksiyonu diğer temsillere dönüştürmeleri istenmiştir. Mülakatların çözümlenmesi göstermiştir ki öğrencilerin farklı temsiller için tanımsal özellikleri kullanımları da farklılık göstermektedir. Dahası, tanımsal özellikleri bütün temsiller için kullanan öğrenciler temsiller arası dönüşümleri de daha başarılı bir şekilde yapmışlardır.

Understanding the Function Concept: Definitional Properties and Multiple Representations

This study investigates grade 11 students’ understanding of the function concept. To do that, the theoretical framework is based on the relationship between multiple representations and the use of the definition of function. The aim is to reveal students’ ability to use the definition as they comment on the multiple representa-tions of functions such as set correspondence diagrams, sets of ordered pairs, graphs and expressions. The sample of the study is 9 students in grade 11 in two schools in Adana, Turkey. These 9 students were selected among 114 grade 11 students in three different subjects groups (Mathematics, Turkish and Mathematics and Social subjects) on the basis of the results from the questionnaires. This study is mainly qualitative and the main data is obtained from the semi-structured interviews with the 9 students. In these interviews, students were asked to decide whether the given representations are functions or not and they were also asked to transform a constant function to its other representations. The analysis of the in-terviews indicates that students’ responses differ in the use of the definitional properties for various representations. Furthermore, students who can use the definitional properties for all representations can do transformations from one representation to the other more successfully.

___

  • Akkoç, H. & Tall, D.O. (2002). “The simplicity, complexity and complications of the function concept.” In A. D. Cockburn & E. Nardi (Eds), Proceedings of the 26th International Conference on the Psychology of Mathematics Education, Norwich, UK, 2, 25-32.
  • Akkoç, H. (2003). The students’ understanding of the core concept of function. Unpublished EdD Thesis, University of Warwick, UK.
  • Bakar, M. N. & Tall, D. O. (1992). Students’ mental prototypes for functions and graphs. International Journal of Mathematics Education in Science and Technology, 23(1), 39-50.
  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247-285.
  • Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Durán, R., Reed, B. S. & Webb, D. (1997). Learning by understanding: The role of multiple representations in learning algebra. American Educational Research Journal, 34(4), 663-689.
  • Bruckheimer, M., Eylon, B., & Markovits, Z. (1986). Functions today and yesterday. For the Learning of Mathematics, 6(2), 18-24.
  • Confrey, J. (1994). “Six approaches to transformation of function using multi-representational software.” Proceedings of the 18th Conference of the International Group for the Psychology of Mathematics Education, University of Lisbon, Portugal, 2, 217-224.
  • DeMarois, P. & Tall, D.O. (1999). “Function: organizing principle or cognitive root?.” In O. Zaslavsky (Ed.), Proceedings of the 23th Conference of the International Group for the Psychology of Mathematics Education, Haifa, Israel, 2, 257-264.
  • Demiralp, A., Gürkan, M. & Pelit, T. (2000). Matematik Lise 1 – Ders Kitabı. Ankara: Başarı Yayınları.
  • Denzin, N.K. & Lincoln, Y.S. (1994). Strategies of inquiry. In N.K. Denzin and Y.S. Lincoln (Eds.), Handbook of qualitative research. (pp. 199-208). Thousands Oaks, CA: Sage.
  • Dubinsky, E. (1991). Reflexive abstraction in advanced mathematical thinking. In D. O. Tall (Ed), Advanced Mathematical Thinking, (pp. 95-123). Dordrecht: Kluwer Academic Publishers.
  • Ginsburg, P. H. (1997). Entering the child’s mind: the clinical interview in psychological research and practice. Cambridge University Press.
  • Kaput, J.J. (1992). Technology and mathematics education. In D. A. Grouws (Ed) NCTM Hand-book of Research on Mathematics Teaching and Learning (pp. 515-556), MAA.
  • Keller, B.A. & Hirsch, C. R. (1998). Student preferences for representations of functions. International Journal of Mathematics Education in Science and Technology, 29(1), 1-17.
  • Kieran, C. (1994). A functional approach to the introduction of algebra – some pros and cons. Proceedings of the 18th International Conference on the Psychology of Mathematics Education, 1, 157-175.
  • Leinhardt, G., Stein, M.K., & Zaslavsky, O. (1990). Functions, graphs, and graphing: tasks, learn-ing and teaching. Review of Educational Research, 60(1), 1-64.
  • Malik, M A. (1980). Historical and pedagogical aspects of the definition of function. International Journal of Mathematical Education in Science & Technology, 11(4), 489-92.
  • Mason, J. (1996). Qualitative researching. London: Sage. O’Callaghan, B. R. (1998). Computer-intensive algebra and students’ conceptual knowledge of functions. Journal for Research in Mathematics Education, 29(1), 21-40.
  • Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification – the case of function. In G. Harel, & E. Dubinsky (Eds), The concept of function: aspects of epistemology and pedagogy, (pp. 59-84), MAA.
  • Tall, D.O. & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limit and continuity. Educational Studies in Mathematics, 12, 151-169.
  • Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. In E. Dubin-sky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education, I, CBMS Issues in Mathematics Education, 4, (pp. 21–44), MAA.
  • Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal for Mathematics Education in Science and Technology, 14,(3), 293-305. Vinner, S. (1992 ). The function concept as a prototype for problems in mathematics learning. In G. Harel, & E. Dubinsky (Eds), The concept of function: aspects of epistemology and pedagogy, (pp. 195-213), MAA.