Preeklampside Epoksieikozatrienoik asit Metabolizması

Amaç: Preeklampsi (PE) hamilelik sırasında hipertansiyon ve proteinüri ile karakterize bir hastalıktır. Epoksieikozatrienoik asitler (EET) vazodilatatör, antienflamatuar ve profibrinolitik etkiye sahip araşidonik asit metabolitleridir. Çözünür epoksit hidrolaz (çEH EC 3.3.3.2) EET’ lerin inaktif diollerine (DHET’ ler) yıkımını katalizler. EET’ lerin düşük dolaşım düzeyleri preekalampsideki yüksek kan basıncıyla ilişkili olabilir. Bu çalışmanın amacı preeklampsi hastalarında EET’ lerin çEH aracılı metabolizmasının temsili bir metaboliti olan 11,12-DHET düzeylerinini belirlenmesidir. Yöntem: 75 PE hastası ve control grubu olarak 75 normotansif gebe kadının plazma örnkelerinde 11,12-DHET düzeyleri ELISA yöntemi ile ölçüldü. Bulgular: PE hastalarının plazma 11,12-DHET düzeylerinin control grubuna kıyasla analmalı olarak yükseldiği saptandı. Sonuç: Bu sonuçlar ve daha önceki bulgularımız PE hastalarında yüksek çEH aktivitesinin daha fazla 11,12-DHET üretimine neden olduğuna işaret etmektedir. Yüksek katalitik aktiviteli çEH enzimi, EET’ lerin hızlı yıkımı yoluyla bu moleküllerin vazodilatatör, antihipertansif, antienflamatuar etkilerinin azalmasına katkı sağlayarak PE patogenizinde bir rol oynuyor olabilir.

Epoxyeicosatrienoic acid Metabolism in Preeclampsia

Objective: Preeclampsia (PE) is a disease that characterized by hypertension and proteinuria during pregnancy.Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites which have vasodilatator, anti-inflammatory andprofibrinolytic effects. Soluble epoxide hydrolase (sEH; EC 3.3.3.2) catalyses the degradation of EETs to their inactivediols (DHETs). Low circulating levels of EETs may be related to high blood pressure in preeclampsia. The aim of thisstudy is to determine the level of 11,12-DHETs, a representative metabolite of sEH-mediated metabolism of EET, inpreeclamptic patients.Method: 11,12-DHET levels were measured by ELISA in plasma samples of 75 PE patients and 75 normotensivepregnant women as controls.Results: It was found that lasma 11,12-DHET levels of PE patients was significantly increased compared to the controlgroup (p

___

  • Choudhury M, Friedman JE. Epigenetics and microRNAs in preeclampsia. Clinical and experimental hypertension 2012; 34: 334-41.
  • Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science 2005; 308: 1592–4.
  • Sibai B, Dekker G, Kupferminc M. Preeclampsia. Lancet. 2005; 365: 785–99.
  • Zoet GA, Koster MP, Velthuis BK, de Groot CJM, Maas AHEM, Fauser BCJM, Franx A, van Rijna BB. Determinants of future cardiovascular health in women with a history of preeclampsia. Maturitas 2015; 82: 153-61.
  • Gongora MC, Wenger NK. Cardiovascular complications of pregnancy. International journal of molecular sciences 2015; 16: 23905-28.
  • Lee G, Tubby J. Preeclampsia and the risk of cardiovascular disease later in life–A review of the evidence. Midwifery 2015; 31: 1127-34.
  • Wang A, Rana S, Karumanchi SA. Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology 2009; 24: 147-58.
  • Hermes W, Van Kesteren F, De Groot CJ. Preeclampsia and cardiovascular risk. Minerva ginecologica 2012; 64: 281- 92.
  • VanWijk MJ, Kublickiene K, Boer K, VanBavel E. Vascular function in preeclampsia. Cardiovascular research 2000; 47: 38-48.
  • Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. American Journal of Physiology-Heart and Circulatory Physiology 2008: 294; H541- H550.
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 5789: 373-76.
  • Moncada S, Vane JR. The role of prostacyclin in vascular tissue. Federation proceedings 1979; 38: 66-71.
  • Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. British journal of pharmacology 1988; 93: 515- 24.
  • Fiona Lyall and Ian A. Greer The vascular endothelium in normal pregnancy and pre-eclampsia. Reviews of Reproduction 1996; 1: 107–116.
  • Sibai B, Dekker G, Kupferminc M. Preeclampsia. Lancet 2005; 365: 785– 799.
  • Yang L, Mäki-Petäjä K, Cheriyan J, McEniery C, Wilkinson IB. The role of epoxyeicosatrienoic acids in the cardiovascular system. British journal of clinical pharmacology 2015; 80: 28-44
  • Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 1999; 6752: 493-7.
  • Popp R, Fleming I, Busse R. Pulsatile stretch in coronary arteries elicits release of endotheliumderived hyperpolarizing factor: A modulator of arterial compliance. Circ Res 1998; 82:696–703.
  • Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hasimoto K, Campbell WB, Falck JR, Michelakis ED. Endotheliumderived hyperpolarizing factor in human internal mammary artery is 11,12- epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKca channels. Circulation 2003; 107:769–776.
  • Coats P, Johnston F, MacDonald J, McMurray JJV, Hillier C. Endotheliumderived hyperpolarizing factor: Identification and mechanism of action in human subcutaenous resistance arteries. Circulation 2001; 103: 1702–1708.
  • Miura H, Wachtel RE, Liu Y, Loberiza J, F. R, Saito T, Miura M, Gutterman DD. Flow-induced dilation of human coronary arterioles: Important role of Ca2+- activated K+ channels. Circulation 2001; 103:1992–1998.
  • Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endotheliumderived hyperpolarizing factors. Circ Res 1996; 78: 415–423.
  • Huang A, Sun D, Jacobson A, Carroll MA, Falck JR, Kaley G. Epoxyeicosatrienoic acids are released to mediate shear stress-dependent hyperpolarization of arteriolar smooth muscle. Circ Res 2005; 96: 376–383.
  • Gauthier KM, Edwards EM, Falck JR, Reddy DS, Campbell WB. 14,15- Epoxyeicosatrienoic acid represents a transferable endothelium-dependent relaxing factor in bovine coronary arteries. Hypertension. 2005; 45: 666– 671.
  • Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiological reviews. 2012;92: 101-30.
  • Wang D, DuBois RN. Epoxyeicosatrienoic acids: a doubleedged sword in cardiovascular diseases and cancer. The Journal of clinical investigation 2012; 122: 19-22.
  • Oni-Orisan A, Alsaleh N, Lee CR, Seubert JM. Epoxyeicosatrienoic acids and cardioprotection: the road to translation, Journal of molecular and cellular cardiology 2014; 74: 199-208.
  • Schaefer WR, Werner K, Schweer H, Schneider J, Arbogast E, Zahradnik HP. Cytochrome P450 metabolites of arachidonic acid in human placenta. Prostaglandins 1997; 54: 677–87.
  • Patel L, Sullivan MH, Elder MG. Production of epoxygenase metabolite by human reproductive tissues. Prostaglandins 1989; 38: 615–24.
  • Gerber RT, Anwar MA, Poston L. Enhanced acetylcholine induced relaxation in small mesenteric arteries from pregnant rats: an important role for endothelium-derived hyperpolarizing factor (EDHF). Br J Pharmacol 1998; 125: 455–60.
  • Houli Jiang, John C. McGiff, Cristiano Fava, Gabriella Amen, Elisa Nesta, Giovanni Zanconato, John Quilley, Pietro Minuz. Maternal and Fetal Epoxyeicosatrienoic Acids in Normotensive and Preeclamptic Pregnancies American Journal of Hypertension 2013; 26: 271-278.
  • Catella F, Lawson JA, Fitzgerald DJ, Fitzgerald GA. Endogenous biosynthesis of arachidonic acid epoxides in humans: Increased formation in pregnancy-induced hypertension. Proc. Nati. Acad. Sci 1990; 87: 5893-5897.
  • Zhou Y, Chang HH, Du J, Wang CY, Dong Z, Wang MH. Renal epoxyeicosatrienoic acid synthesis during pregnancy. American Journal of Physiology-Renal Physiology 2005; 288: 221-226.
  • Spector AA, Fang X, Snyder GD, Weintraub NL. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progress in Lipid Research 2004; 43: 55-90.
  • Sari I, Pinarbasi H, Pinarbasi E, Yildiz C. Association between the soluble epoxide hydrolase gene and preeclampsia. Hypertens Pregnancy 2017; doi.org/10.1080/10641955.2017.1388390.
  • American College of Obstetricians and Gynecologists. Hypertension in pregnancy. Report of the American college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstetrics and gynecology 2013; 122: 1122.
  • Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 2002; 82: 131–85.
  • Zeldin DC. Epoxygenase Pathways of Arachidonic Acid Metabolism J Biol Chem 2001; 276: 36059–62.
  • Przybyla-Zawislak BD, Srivastava PK, Vázquez-Matías J, Mohrenweiser HW, Maxwell JE, Hammock BD, BradburyJA, Enayetallah AE, Zeldin DC, Grant DF. Polymorphisms in Human Soluble Epoxide Hydrolase. Molecular Pharmacology 2003; 64: 482–90.
  • Fava C, Montagnana M, Danese E, Almgr en P, Hedblad B, Engström G, Göran B, Minuz, Pietro M, Olle M. Homozygosity for the EPHX2 K55R polymorphism increases the long-term risk of ischemic stroke in men: a study in Swedes. Pharmacogenetics and genomics 2010; 20: 94-103.
  • Lee CR1, North KE, Bray MS, Fornage M, Seubert JM, Newman JW, Hammock BD, Couper DJ, Heiss G, Zeldin DC. Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Hum. Mol. Genet 2006; 15: 1640-9.
  • Pietro Minuz, Houli Jiang, Cristiano Fava, Lucia Turolo, Stefania Tacconelli, Marco Ricci, Paola Patrignani, Alberto Morganti, Alessandro Lechi, McGiff JC. Altered Release of Cytochrome P450 Metabolites of Arachidonic Acid in Renovascular Disease Hypertension 2008; 51: 1379– 1385
  • Staff AC, Dechend R, Pijnenborg R. Learning From the Placenta Acute Atherosis and Vascular Remodeling in Preeclampsia–Novel Aspects for Atherosclerosis and Future Cardiovascular Health. Hypertension 2010; 56: 1026-34.