Meme kanseri hücre hatlarında propranolol ve paklitakselin anjiyogenez üzerine etkisi

Amaç: Bu çalışmanın amacı infantil hemanjiyom vakalarında kullanılan propranolol (PR) ile kemoterapötik bir ajan olarak yaygın kullanılan Paklitakselin (PX) kanser hücreleri üzerine etkisini incelenmesidir.Gereç ve Yöntem: Tripan mavisi ile hücre sayımı yapılarak hücrelerin ikilenme zamanları belirlendi. MTT testi ile de ilaçların sitotoksik etkisi ve IC50 değerleri analiz edildi. İnvazyon yönünden farklı iki meme kanseri hücre hattında (MDA-MB-231 ve MCF-7) anti-VEGF, anti-eNOS, anti-iNOS ve anti-ERK1/2 primer antikorları indirek immunohistokimyasal yöntemle incelendi. İmmunoreaktivitenin değerlendirilmesi için H skorlama sistemi kullanıldı.Bulgular: MTT testi ile hücrelere uygulanacak ilaç dozlarının IC50 değerleri MDA için; PX: 5 nmol, PR: 50 µm ve MCF- 7 için; PX: 3,7  nmol, PR: 50 µm olarak bulundu. İmmunohistokimyasal uygulamada kanser hücrelerinde kontrol gruplarının immunoreaktivitesi şiddetli ve/veya çok şiddetli artmış iken PX, PR ve kombine uygulanan ilaç gruplarında boyanma şiddeti anlamlı veya çok anlamlı olarak azaldı. Sonuç: Bu çalışma ile kemoterapötik olarak uygulanan paklitaksele ek olarak anti anjiyogenik ilaç uygulamalarının damarlarda vazodilatasyon, hücre çoğalması, göçü ve yaşam süresini etkilemesi sonucunda anjiyogenezi azaltması veya önlemesi açısından meme kanserinin tedavisinde önemli olduğu düşünülmüştür.

Effects of propranolol and paclitaxel on angiogenesis in breast cancer cell lines

Purpose: The aim of this study was to investigate the effect of propranolol (PR), which is used in infantile hemangiomas, and paclitaxel (PX), which is widely used as an chemotherapeutic agent, on cancer cells. Materials and Methods: That the cells counted with trypan blue the doubling time were determined. Also with MTT assay were analyzed the cytotoxic effect and IC50 value of drugs.  In the breast cancer cell lines which are differents with regard to invasion (MDA-MB-231 and MCF-7 ) anti-VEGF, anti-eNOS, anti-iNOS and anti-ERK1/2 primer antibodies investigated  by using immunohistochemical methods. To evaluation of immunoreactivity was used the H-scoring system.Results: With MTT test, IC50 values are applied to the cells dosage for MDA-MB-231 cells; PX: 5 nmol, PR: 50 µm, and for MCF- 7 cells PX: 3,7 nmol, PR: 50 µm, were established. In immunohistochemical application, immunoreactivity of control group was increased with strong and/or stronger in the cancer cells, while those of in  PX, PR and combine treatment was decreased either significant or very significant. Conclusion: With this study, application of anti chemotherapeutic therapy which is paclitaxel, in additon with anti angiogenic therapy in the treatment of breast cancer, vascular vasodilation, cell proliferation, migration, survival ultimately thought to be important in the prevention or reduce of angiogenesis.

___

  • 1. Aslan FE, Gürkan A. Kadinlarda meme kanseri risk düzeyi. J Breast Health. 2007;3:63-8.
  • 2. AydıntuğS. Meme kanserinde erken tanı. Sürekli Tıp Eğitimi Dergisi. 2004;226-8.
  • 3. Sayek İ. Temel Cerrahi: Ankara, Güneş Kitabevi, 2004.
  • 4. Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med. 1971;285:1182-6.
  • 5. Jensen HM, Chen I, DeVault MR, Lewis AE. Angiogenesis induced by ‘‘normal’’ human breast tissue: A probable marker for precancer. Science. 1982;218:293-5.
  • 6. Miller K, Sledge GW. Dimming the blood tide. Angiogenesis, antiangiogenic therapy and breast cancer, in Breast Cancer Management Application of Clinical and Translational Evidence to Patient Care, 2nd ed. (Ed JM Nabholtz):287-308. Philadelphia, PA, Lippincott Williams & Wilkins, 2003.
  • 7. Yazır Y. Vasküler endotel büyüme faktörü (VEGF): reseptörleri ve fonksiyonları. Cumhuriyet Üniversitesi Tıp Fakültesi Dergisi. 2007;29:128-36.
  • 8. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Rıverosmoreno V, Moncada S. Nitric oxide synthase activity Ain human gynecological cancer. Cancer Res. 1994;54:1352-4.
  • 9. Daouti S, Wang H, Li WH, Higgins B, Kolinsky K, Packman K et al. Characterization of a Novel Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor with a Unique Mechanism of Action for Cancer Therapy. Cancer Res. 2009;69:1924-32.
  • 10. Zhu L, Xie J, Liu Z, Huang Z, Huang M, Yin H et al. PEDF/VEGF ratio plays a crucial role in the spontaneous regression of infant hemangioma and the therapeutic effect of propranolol. Cancer Sci. 2018; doi: 10.1111/cas.13611.
  • 11. Armaiz-Pena GN, Lutgendorf SK, Cole SW, Sood AK. Neuroendocrine modulation of cancer progression. Brain Behav Immun. 2009;23:10-5.
  • 12. Liu Y, Yu X, Zhuang J. Epinephrine Stimulates cell proliferation and induces chemoresistance in myeloma cells through the β-Adrenoreceptor in vitro. Acta Haematol. 2017;138:103-10.
  • 13. Özmen V. Dünya’da ve türkiye’de meme kanseri. The Journal of Breast Health. 2008;7-9.
  • 14. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93:2325–7.
  • 15. Bouck N, Stellmach V, Hsu S.C. How Tumors Become Angiogenic. Adv Cancer Res. 1996:69:135- 74.
  • 16. Luengo-Gil G, Gonzalez-Billalabeitia E, PerezHenarejos SA, Navarro Manzano E, Chaves-Benito A, Garcia-Martinez E et al. Angiogenic role of miR20a in breast cancer. PLoS One. 2018; doi: 10.1371/journal.pone.0194638.
  • 17. Pantziarka P, Bryan BA, Crispino S, Dickerson EB. Propranolol and breast cancer-a work in progress. Ecancermedicalscience. 2018;12:ed82.
  • 18. Storch C H, Hoeger P H. Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action. Br J Dermatol. 2010;163:269- 74.
  • 19. Rico M, Baglioni M, Bondarenko M, Laluce NC, Rozados V, André N et al. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget. 2017;8:2874-89.
  • 20. Rivero EM, Piñero CP, Gargiulo L, Entschladen F, Zänker K, Bruzzone A et al. The β 2-Adrenergic agonist salbutamol inhibits migration, invasion and metastasis of the human breast cancer MDA-MB231 cell line. Curr Cancer Drug Targets. 2017;17:756- 66.
  • 21. Creed SJ, Le CP, Hassan M, Pon CK, Albold S, Chan KT et al. β2-adrenoceptor signaling regulates invadopodia formation to enhance tumor cellinvasion. Breast Cancer Res. 2015;17:145.
  • 22. Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 2016;7:10634.
  • 23. Chen H, Liu D, Guo L, Cheng X, Guo N, Shi M. Chronic psychological stress promotes lung metastatic colonization of circulating breast cancer cells by decorating a pre-metastatic niche through activating β-adrenergic signaling. J Pathol. 2018;244:49–60.
  • 24. Nagaraja AS, Dood RL, Armaiz-Pena G, Kang Y, Wu SY, Allen JK et al. Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight. 2018;7:11-14.
  • 25. Ashrafi S, Shapouri R, Shirkhani A, Mahdavi M. Anti-tumor effects of propranolol: Adjuvant activity on a transplanted murine breast cancer model. Biomed Pharmacother. 2018;104:45-51.
  • 26. Ferrara, N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat. 1995;36:127-37.
  • 27. Wang B, Shen J, Wang Z, Liu J, Ning Z, Hu M. Isomangiferin, a novel potent vascular endothelial growth factor receptor 2 kinase inhibitor, suppresses breast cancer growth, metastasis and angiogenesis. J Breast Cancer. 2018;21:11-20.
  • 28. Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res. 1999;5:1041-56.
  • 29. Oess S, Icking A, Fulton D, Govers R, Müller-Esterl W. Subcellular targeting and trafficking of nitric oxide synthases. Biochem J. 2006;396:401-9.
  • 30. Gallo O, Masini E, Morbidelli L, Franchi A, FiniStorchi I, Vergari WA et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst. 1998;90:587-96.
  • 31. Wink DA, Ridnour LA, Hussain PS, Harris CC. The reemergence of nitric oxide and cancer. Nitric oxide. 2008;19:65–7.
  • 32. Brennan PA, Dennis S, Poller D, Quintero M, Puxeddu R, Thomas GJ. Inducible nitric oxide synthase: correlation with extracapsular spread and enhancement of tumor cell invasion in head and neck squamous cell carcinoma. Head Neck. 2008;30:208–14.
  • 33. Somasundaram V, Basudhar D, Bharadwaj G, No JH, Ridnour LA, Cheng R et al. Molecular mechanisms of nitric oxide in cancer progression, signal transduction and metabolism. Antioxid Redox Signal. 2018; doi: 10.1089/ars.2018.7527.
  • 34. Prueitt RL, Boersma BJ, Howe TM, Goodman JE, Thomas DD, Ying L et al. Inflammation and IGF-I activate the Akt pathway in breast cancer. Int J Cancer. 2006;120:796-805.
  • 35. Villegas SN, Gombos R, García-López L, GutiérrezPérez I, García-Castillo J, Vallejo DM et al. PI3K/Akt cooperates with oncogenic notch by inducing nitric oxide-dependent inflammation. Cell Rep. 2018;22:2541-49.
  • 36. Brouet A, DeWever J, Martinive P, Havaux X, Bouzin C, Sonveaux P et.al. Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB J. 2005;19:602-4.
  • 37. Fulton D, Gratton JP, Sessa WC. Posttranslational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough?. J Pharmacol Exp Ther. 2001;299:818-24.
  • 38. Lai H, Fu X, Sang C, Hou L, Feng P, Li X et al. Selenadiazole derivatives inhibit angiogenesismediated human breast tumor growth through suppressing VEGFR2-mediated ERK and AKT signaling pathway. Chem Asian J. 2018, doi:10.1002/asia.201800110.
  • 39. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K et.al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597-601.
  • 40. Strowski M. Z, Cramer T, Schafer G, Juttner S, Walduck A, Schipani E et al. Helicobacter pylori stimulates host vascular endothelial growth factor-A (VEGF-A) gene expression via MEK/ERKdependent activation of Sp1 and Sp3. FASEB J. 2004;18:218-20.
  • 41. Breslin J. W, Pappas P. J, Cerveira J. J, Hobson R. W, Duran W. N. VEGF increases endothelial permeability by separate signaling pathways involving ERK- 1/2 and nitric oxide. Am J Physiol Heart Circ Physiol. 2003;284:92-100.
  • 42. Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem. 2001;49:289-98.
  • 43. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389-95.
  • 44. Annabi B, Vaillancourt-Jean E, Weil AG, Béliveau R. Pharmacological targeting of β-adrenergic receptor functions abrogates NF-κB signaling and MMP-9 secretion in medulloblastoma cells. Onco Targets Ther. 2010;3:219-26.
  • 45. Montoya A, Amaya CN, Belmont A, Diab N, Trevino R, Villanueva G et al. Use of non-selective β-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget. 2017;8:6446-60.
  • 46. Seya Y, Fukuda T, Isobe K, Kawakami Y, Takekoshi K. Effect of norepinephrine on RhoA, MAP kinase, proliferation and VEGF expression in human umbilical vein endothelial cells. Eur J Pharmacol. 2006;553:54-60.
  • 47. Pasquier E, Ciccolini J, Carre M, Giacometti S, Fanciullino FR, Pouchy C et.al. Propranolol potentiates the anti-angiogenic effects and antitumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011;2:797-809.
Cukurova Medical Journal-Cover
  • ISSN: 2602-3032
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1976
  • Yayıncı: Çukurova Üniversitesi Tıp Fakültesi