Geometrik ve Dinamik Parametrelerin Darrieus Türbin Performansı Üzerindeki Etkisinin Araştırılması: QBlade Algoritması ile Sayısal Optimizasyon

Artan enerji talebi, kişi başına düşen enerji kullanımı, çevresel problemler ve bunlara bağlı diğer olumsuz sonuçlar bilim insanlarını ve mühendisleri yenilenebilir enerji sistemlerinin verimliliği konusunda daha fazla çalışma yapmaya sevk etmiştir. Serbest akışlı (rüzgâr ve hidrokinetik) türbinler, üzerinde en çok araştırma yapılan yenilenebilir enerji teknolojileri olup Darrieus türbinleri özellikle küçük ölçekli ve lokal uygulamalarda önemli bir yere sahiptir. Darrieus türbinlerinin performansı hakkında birçok deneysel ve hesaplamalı çalışma yapılmış olmasına rağmen, zaman ve maliyet açısından nispeten çok daha elverişli olan numerik çalışmaların sayısı oldukça sınırlıdır. Bu çalışmanın temel amacı, farklı geometrik ve dinamik konfigürasyonlara sahip Darrieus türbinlerinin QBlade yazılımı kullanılarak analiz edilmesidir. Mevcut çalışmada, düz kanatlı Darrieus türbinlerinden daha yüksek performans elde edilmesi amacı ile kanat profili, kanat sayısı, kord uzunluğu, solidite ve sarmallığın performansa etkisi analiz edilmiştir. Bu çalışmada NACA 0020 profilinin, dikey eksen türbinlerde diğer simetrik kanat kesitlerine nazaran daha iyi performans gösterdiği bulunmuştur. Üç kanatlı türbinlerin daha geniş TSR aralığında çalıştığı ve yüksek performans sergilediği tespit edilmiştir. Ayrıca, kord uzunluğu arttıkça maksimum güç katsayısına daha düşük uç hız oranında (TSR) ulaşıldığı tespit edilmiştir. Bu çalışmanın hem rüzgâr hem de hidrokinetik uygulamalar için farklı boyut ve dinamik ölçeklere sahip Darrieus türbini tasarımı çalışmalarına katkıda bulunması beklenmektedir.

Investigating the Effect of Geometrical and Dynamic Parameters on the Performance of Darrieus Turbines: A Numerical Optimization Approach via QBlade Algorithm

Increasing energy demand, rising per capita energy use, growing climate problems and other detrimentalconsequences of energy and environmental issues have prompted scientists and engineers to conduct more studieson the technical feasibility and efficiency of renewable energy conversion systems. Free flow (wind andhydrokinetic) turbines are one of the mostly investigated renewable energy technologies and Darrieus turbineshave an exceptional place especially for smaller scale and domestic applications. Many experimental andcomputational studies have been provided on the performance of Darrieus turbines. However, the number ofnumerical studies which are more time and cost effective than computational and experimental works are quitelimited in the literature. The main objective of this study is to analyze Darrieus turbines at different geometricaland dynamic configurations using numerical QBlade software. In this study, the effect of airfoil selection, numberof blades, chord length, solidity and helicity are analyzed in terms of delivering higher performance at straightbladed Darrieus turbines. It has been found that NACA 0020 profile performs better relative to other symmetricalblade sections in vertical axis turbines. Better performance and wider TSR range is obtained for three bladedturbines. Also, increasing chord lengths delivered maximum power at lower tip speed ratio (TSR) ranges. Thisstudy is expected contribute site-dependent Darrieus turbine design works at different dimension and dynamicscales for both wind and hydrokinetic applications.

___

  • [1] Mohamed M.H. 2012. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 47 (1): 522–530.
  • [2] Mejbri A., Haddou S., Rejeb J.B. 2014. Renewable energy, fossil fuels and economic development: Evidence from the Middle East and North African countries. The Journal of Energy and Development, 40 (1/2): 209–228.
  • [3] Martins F., Felgueiras C., Smitková M. 2018. Fossil fuel energy consumption in European countries. Energy Procedia, 153: 107–111.
  • [4] REN21. 2019. Renewables 2019 Global Status Report.
  • [5] Çengel Y.A., Cimbala J.M.. 2006. Fluid mechanics: fundamentals and applications. Fluid Mechanics: With Problems and Solutions, and an Aerodynamic Laboratory, New York.
  • [6] Williamson S.J., Stark B.H., Booker J.D. 2014. Low head pico hydro turbine selection using a multi-criteria analysis. Renewable Energy, 61: 43–50.
  • [7] Okot D.K. 2013. Review of small hydropower technology. Renewable and Sustainable Energy Reviews, 26: 515–520.
  • [8] Elbatran A.H., Yaakob O.B., Ahmed Y.M., Shabara H.M. 2015. Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renewable and Sustainable Energy Reviews, 43: 40–50.
  • [9] Yuce M.I., Muratoglu A. 2015. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43: 72–82.
  • [10] Muratoglu A., Yuce M.I. 2017. Design of a River Hydrokinetic Turbine Using Optimization and CFD Simulations. Journal of Energy Engineering, 143 (4).
  • [11] Batten W.M.J., Bahaj A.S., Molland A.F. 2006. Chaplin J.R., Hydrodynamics of marine current turbines. Renewable Energy, 31 (2) : 249–256.
  • [12] Aslam Bhutta M.M., Hayat N., Farooq A.U., Ali Z., Jamil S.R., Hussain Z. 2012.Vertical axis wind turbine – A review of various configurations and design techniques. Renewable and Sustainable Energy Reviews, 16 (4) : 1926–1939.
  • [13] Tummala A., Velamati R.K., Sinha D.K., Indraja V., Krishna V.H. 2016. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56: 1351–1371.
  • [14] Gorban A.N., Gorlov A.M., Silantyev V.M. 2001. Limits of the Turbine Efficiency for Free Fluid Flow. Journal of Energy Resources Technology, 123 (4) : 311–317.
  • [15] Chen L., Ponta F.L., Lago L.I. 2011. Perspectives on innovative concepts in wind-power generation. Energy for Sustainable Development, 15 (4) : 398–410.
  • [16] Shonhiwa C., Makaka G. 2016. Concentrator Augmented Wind Turbines: A review. Renewable and Sustainable Energy Reviews, 59: 1415–1418.
  • [17] Muratoglu A. 2018. A review on alternative hydropower production methods. Journal of Engineering and Tecnology, 2: 21–28.
  • [18] Khan M.J., Bhuyan G., Iqbal M.T. 2009. Quaicoe J.E., Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86 (10) : 1823–1835.
  • [19] Forbush D., Cavagnaro R.J., Polagye B. 2019. Power-tracking control for cross-flow turbines. Journal of Renewable and Sustainable Energy, 11 (1): 014501.
  • [20] Balduzzi F., Bianchini A., Carnevale E.A., Ferrari L., Magnani S.2012. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Applied Energy: 97 921–929.
  • [21] Kim D., Gharib M., Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. Journal of Wind Engineering and Industrial Aerodynamics, 115: 48–52, 2013.
  • [22] Raciti Castelli M., Ardizzon G., Battisti L., Benini E., Pavesi G. 2010. Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine, 409–418.
  • [23] Gorlov M. 1995. The helical turbine: A new idea for low-head hydro. Hydro Review, 14 (5).
  • [24] Paraschivoiu I. 2002. Wind turbine design: with emphasis on Darrieus concept. Polytechnic International Press.
  • [25] Bernad S., Georgescu A., Georgescu S.-C., Susan-Resiga R., Anton I. 2008. Flow investigations in Achard turbine. Proceedings of the Romanian Academy, 9 (2).
  • [26] Gorlov A.M. 2012. Universal spherical turbine with skewed axis of rotation. https://patents.google.com/patent/US20120070294A1/en (Access Date: 26.01.2019)
  • [27] Mosbahi M., Ayadi A., Mabrouki I., Driss Z., Tucciarelli T., Abid M.S. 2019. Effect of the Converging Pipe on the Performance of a Lucid Spherical Rotor. Arabian Journal for Science and Engineering, 44 (2): 1583–1600.
  • [28] Kirke B.K., Lazauskas L. 2011. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renewable Energy, 36 (3): 893–897.
  • [29] Kiho S., Shiono M., Suzuki K. 1996. The power generation from tidal currents by darrieus turbine. Renewable Energy, 9 (1–4): 1242–1245.
  • [30] Bachant P., Wosnik M. 2015. Characterising the near-wake of a cross-flow turbine. Journal of Turbulence, 16 (4): 392–410.
  • [31] Al-Dabbagh M.A., Yuce M.I. 2018. Simulation and Comparison of Helical and Straight-bladed Hydrokinetic Turbines. International Journal of Renewable Energy Research (IJRER), 8 (1): 504– 513.
  • [32] Kirke B.K. 2011. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renewable Energy, 36 (11): 3013–3022.
  • [33] Cheng Q., Liu X., Ji H.S., Kim K.C., Yang B. 2017. Aerodynamic Analysis of a Helical Vertical Axis Wind Turbine. Energies, 10 (4).
  • [34] Du L., Ingram G., Dominy R.G. 2019. Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance. Energy Science & Engineering. https://doi.org/10.1002/ese3.430.
  • [35] Rezaeiha A., Montazeri H., Blocken B. 2019. On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 180: 838–857.
  • [36] Sengupta A.R., Biswas A., Gupta R. 2019. Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement. Renewable Energy, 139: 1412–1427.
  • [37] Battisti L., Persico G., Dossena V., Paradiso B., Raciti Castelli M., Brighenti A., Benini E. 2018. Experimental benchmark data for H-shaped and troposkien VAWT architectures. Renewable Energy, 125: 425–444.
  • [38] Scungio M., Arpino F., Focanti V., Profili M., Rotondi M. 2016. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion and Management, 130: 60–70.
  • [39] Mohamed M.H., Dessoky A., Alqurashi F. 2019. Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis. Energy, 179: 1217–1234.
  • [40] Carrigan T.J., Dennis B.H., Han Z.X., Wang B.P. 2012. Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution. ISRN Renewable Energy: 1–16.
  • [41] Ghasemian M., Ashrafi Z.N., Sedaghat A. 2017. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 149: 87–100.
  • [42] Muratoğlu A., Demir M.S. 2019. Numerical analysis of a straight bladed vertical axis Darrieus wind turbine: Verification of DMS algorithm and QBlade code. European Journal of Technic, 9 (2): 195–208.
  • [43] Marten D., Wendler J., Pechlivanoglou G., Nayeri C.N., Paschereit C.O. 2013. Qblade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines. International Journal of Emerging Technology and Advanced Engineering, 3 (3): 264–269.
  • [44] Qblade. 2018. Wind turbine design and simulation. Hermann Föttinger Institute of TU Berlin.
  • [45] Drela M. 2013. Xfoil: Subsonic Airfoil Development System, MIT.
  • [46] Morgado J., Vizinho R., Silvestre M.A.R., Páscoa J.C. 2016. XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Aerospace Science and Technology, 52: 207–214.
  • [47] Worstell M.H. 1981. Aerodynamic Performance of the DOE/Sandia 17-m-Diameter Vertical-Axis Wind Turbine. Journal of Energy, 5 (1): 39–42.
  • [48] Paraschivoiu I., Delclaux F. 1983. Double multiple streamtube model with recent improvements (for predicting aerodynamic loads and performance of Darrieus vertical axis wind turbines). Journal of Energy, 7 (3): 250–255.
  • [49] Marten D., Wendler J., Pechlivanoglou G., Nayeri C.N., Paschereit C.O. 2013. Development and Application of a Simulation Tool For Vertical and Horizontal Axis Wind Turbines. Proceedings of the ASME Turbo Expo, 8 (June).
  • [50] Consul C.A. 2011. Hydrodynamic Analysis of a Tidal Cross-Flow Turbine, Oxford.
  • [51] Bachant P. 2011. Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence. University of New Hampshire, M.Sc. thesis, 122 p, Durham.
  • [52] Muratoglu A. 2014. Design and simulation of a riverine hydrokinetic turbine. Ph.D. thesis, University of Gaziantep, Institute of Natural and Applied Sciences, 212 p, Gaziantep.
  • [53] Demir M.S. 2019. Design and CFD analyses of a spherical hydrokinetic turbine for energy production in gravity water transmission pipelines. M.Sc. thesis, Batman University, Institute of Natural and Applied Sciences, 72 p, Batman.
  • [54] Paraschivoiu I. 1982. Aerodynamic loads and performance of the Darrieus rotor. Journal of Energy, 6 (6): 406–412.
  • [55] Hashem I., Mohamed M.H. 2018. Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy, 142: 531–545.
  • [56] Feng F., Zhao S., Qu C., Bai Y., Zhang Y., Li Y.2018. Research on Aerodynamic Characteristics of Straight-Bladed Vertical Axis Wind Turbine with S Series Airfoils. International Journal of Rotating Machinery. https://doi.org/10.1155/2018/8350243.
  • [57] Subramanian A., Yogesh S.A., Sivanandan H., Giri A., Vasudevan M., Mugundhan V., Velamati R.K. 2017. Effect Of Airfoil and Solidity On Performance Of Small Scale Vertical Axis Wind Turbine Using Three Dimensional CFD Model. Energy, 133: 179–190.
  • [58] Rezaeiha A., Montazeri H., Blocken B. 2018. Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades. Energy, 165: 1129–1148.
  • [59] Brinck D., Jeremejeff N. 2013. The development of a vertical axis tidal current turbine. KTH School of Industrial Engineering and Management. M.Sc. thesis, KTH School of Industrial Engineering and Management, Division of Energy Techhnology, 84 p, Stockholm.
  • [60] Brusca S., Lanzafame R., Messina M. 2015. Design and performance of a straight-bladed darrieus wind turbine Design and Performance of a Straight-Bladed Darrieus Wind Turbine. International Journal of Applied Engineering Research, 10 (September), 3979–3982.
  • [61] Qamar S.B., Janajreh I. 2017. A Comprehensive Analysis Of Solidity For Cambered Darrieus VAWTs. International Journal of Hydrogen Energy, 42 (30): 19420–19431.
  • [62] Delafin P.L., Nishino T., Wang L., Kolios A. 2016. Effect Of The Number Of Blades And Solidity On The Performance Of a Vertical Axis Wind Turbine. Journal of Physics: Conference Series, 753 (2).
  • [63] Eboibi O., Danao L.A.M., Howell R.J. 2016. Experimental Investigation of The Influence of Solidity On The Performance and Flow Field Aerodynamics of Vertical Axis Wind Turbines at Low Reynolds Numbers. Renewable Energy, 92: 474–483.
  • [64] Roh S.C., Kang S.H. 2013. Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine. Journal of Mechanical Science and Technology, 27 (11): 3299–3307.
  • [65] Sheikh S.R. 2015. Hydrodynamic Design and Optimization of Vertical Axis Water Turbine for Shallow and High Velocity Water Streams of Pakistan. in: UMT National Multidisciplinary Engineering Conference 2015 (NMEC-15), (November), 1–18, 2015. doi:10.13140/RG.2.1.3358.1520.
  • [66] Winchester J., Quayle S. 2009. Torque Ripple and Variable Blade Force: A Comparison of Darrieus and Gorlov-Type Turbines For Tidal Stream Energy Conversion, in Proceedings of the 8th European Wave and Tidal Energy Conference, 668–676.
  • [67] Marsh P., Ranmuthugala D., Penesis I., Thomas G. 2015.Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renewable Energy, 81: 926–935.
  • [68] Moghimi M., Motawej H. 2020. Developed DMST Model For Performance Analysis and Parametric Evaluation of Gorlov Vertical Axis Wind Turbines. Sustainable Energy Technologies and Assessments, 37. https://doi.org/10.1016/j.seta.2019.100616.
  • [69] Battisti L., Brighenti A., Benini E., Castelli M.R. 2016. Analysis of Different Blade Architectures on Small VAWT Performance. Journal of Physics: Conference Series, 753 (6).
  • [70] Niblick A.L. 2012. Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micropower Generation System. University of Washington, Washington.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü
Sayıdaki Diğer Makaleler

3-Metil-4-(3-benzensulfoniloksi-4-metoksibenzilidenamino)-4,5-dihidro-1H1,2,4-triazol-5-on molekülünün DFT(B3LYP/mPW1PW91) ve HF Yöntemleriyle Yapısının İncelenmesi

Özlem AKTAŞ-YOKUŞ, Hilal MEDETALİBEYOĞLU, Haydar YÜKSEK

Derin Evrişimsel Sinir Ağı Kullanılarak Kayısı Hastalıklarının Sınıflandırılması

Davut HANBAY, Kazım HANBAY, Muammer TÜRKOĞLU, Işıl SARAÇ SİVRİKAYA

Hacıosman Ormanı Tabiatı Koruma Alanı (Samsun) Florası, Vejetasyon ve Habitat Yapısı ile Genel Bitki Ekolojisi Özellikleri Üzerine Bir Değerlendirme

Okan ÜRKER

Fe+ İyonu Aşılanmış TiO2 Tek Kristallerin Manyetik Özelliklerinin İncelenmesi

Özgül KARATAŞ

Bir Aylık ve Beş Aylık Erkek Ratlarda Medulla Spinalis’in Servikal Segmenti Üzerine Yapılan Morfolojik ve Stereolojik Bir Çalışma

Gamze ÇAKMAK, Mesude CANDAN

Asya Ülkelerinin Beklenen Yaşam Süresi Bakımından Sınıflandırılmasında Etkili Olan Sosyoekonomik Değişkenlerin Kısmi En Küçük Kareler Diskriminant Analizi ile Belirlenmesi

Alime Kıvılcım KOZAN, Esra POLAT

Geometrik ve Dinamik Parametrelerin Darrieus Türbin Performansı Üzerindeki Etkisinin Araştırılması: QBlade Algoritması ile Sayısal Optimizasyon

Abdullah MURATOĞLU, Muhammed Sungur DEMİR

7-Etil-6-klor-2-metilkromon ve 7-Etil-6-klorflavonun Sentezi ve Teorik Hesaplamaları

Bayhan KARABULUT

Üç Farklı Bölgeye Ait Pomzanın Yüksek Plastisiteli Kile Etkisinin Karşılaştırılması

Burak DERELİ, Erhan KELEŞ, Ömür ÇİMEN

Sayısal İntegral Metodu ile Singüler Pertürbe Multi-Point Sınır Değer Problemlerinin Sayısal Çözümü

Derya ARSLAN