İndirgenmiş Grafen Oksit Modifiye Yüzey Baskılı Karbon Elektrotlar Kullanılarak Beta-Bloker İlaçların Elektrokimyasal Davranışının Araştırılması

Bu çalışmada, propranololün elektrokimyasal davranışı, indirgenmiş grafen oksit (rGO) ile modifiye edilmiş yüzey baskılı karbon elektrotlar (SPCE) ile incelenmiştir. Oksidasyon işlemi, döngüsel voltametri (CV) ve diferansiyel puls voltametri (DPV) teknikleri kullanılarak gerçekleştirilmiştir. Sonuçlar, rGO'nun oksidasyon pik akımını artırarak bu ilaçları uygun potansiyellerde oksitlediğini göstermiştir. Modifiye edilmiş SPCE, beta-blokerlerin, fosfat tampon çözeltisinde (PBS) alışılmadık derecede pozitif bir potansiyelde oksidasyonuna doğru mükemmel katalitik aktivite sergilemiştir. Propranololün tespiti için önerilen sensörün doğrusal konsantrasyon aralığı ve tespit limiti, sırasıyla, 50 µM ve 2.61 µM olarak elde edilmiştir.

An Investigation into the Electrochemical Behavior of Beta-Blocker Drugs Using Reduced Graphene Oxide Modified Screen Printed Electrodes

In this study, the electrochemical behavior of propranolol was investigated on screen printed electrodes (SPCE)with reduced graphene oxide (rGO). Oxidation process, cyclic voltammetry (CV) and differential pulsevoltammetry (DPV) techniques were conducted by using measurements. The results showed that rGO increasedthe oxidation rate by increasing the peak current, and therefore oxidizing these drugs at appropriate potentials. Themodified SPCE exhibited excellent catalytic activity towards oxidation of the beta-blockers at an unusuallypositive potential in phosphate buffer solution (PBS). The linear concentration range and the detection limit of theproposed sensor for the detection of propranolol was 5- 50 µM and 2.61 µM, respectively

___

  • [1] Moscou K., Snipe K. 2013. Pharmacology for Pharmacy Technicians. Elsevier, Missouri, 354- 357.
  • [2] Vázquez P., Martínez Galera M., Serrano Guirado A. 2010. Determination of five beta-blockers in wastewaters by coupled-column liquid chromatography and fluorescence detection. Analytica Chimica Acta, 666: 38-44.
  • [3] Sendon J.L., Swedberg K., McMurray J., Tamargo J., Maggioni A.P., Dargie H. 2004. Expert consensus document on beta-adrenergic receptor blockers, Europen Society of Cardiology, 25: 1341-1362.
  • [4] Frishman W.H. 2008. Beta-adrenergic blockers: a 50-year historical perspective. American Journal of Therapeutics, 15: 565-76.
  • [5] Santoro M.I.R.M., Cho H.S., Kedor-Hachman E.R.M. 1996. Simple template-free solution route for the synthesis of Cu(OH)2 and CuO nanostructures and application for electrochemical determination three ß-blockers. Analytical Letters, 29: 775.
  • [6] Siren H., Saarinen M., Hainari S., Riekkola M.L. 1993. Screening of beta-blockers in human serum by ion-pair chromatography and their identification as methyl or acetyl derivatives by gas chromatography-mass spectrometry. Journal of Chromatography A, 632:215.
  • [7] Clohs L., McErlane K.M. 2003. Comparison between capillary electrophoresis and highperformance liquid chromatography for the stereoselective analysis of carvedilol in serum. Journal of Pharmaceutical and Biomedical Analysis, 31: 407.
  • [8] Modamio P., Lastra C.F., Marino E.L. 1998. Error structure for the HPLC analysis for atenolol, metoprolol and propranolol: a useful weighting method in parameter estimation. Journal of Pharmaceutical and Biomedical Analysis, 17: 507.
  • [9] Nasrin S., Mohammad H., Lotfali S., Robab M., Abolghasem J. 2011. Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles. Electrochimica Acta, 58: 336-347.
  • [10] Kazici H.C, Yayla M, Ulaş B, Aktaş N, Kivrak H. 2019. Development of Nonenzymatic Benzoic Acid Detection on PdSn/GCE/Vulcan XC‐72R Prepared via Polyol Method. Electroanalysis, 31: 1118-1124.
  • [11] Kazici H.C, Salman F., Kivrak H.D. 2017. Synthesis of Pd–Ni/C bimetallic materials and their application in non-enzymatic hydrogen peroxide detection. Materials Science-Poland, 35: 660- 666.
  • [12] Nassef H.M., Civit L., Fragoso A., Sullivian C.K. 2008. Amperometric sensing of ascorbic acid using a disposible screen-printed electrode modified with electrografted o-aminophenol film. Analyst, 133: 1736-1741.
  • [14] Mccreey R.L. 2008. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev., 108: 2646-2687.
  • [15] Serafin V., Agul L., Yanez-Sedeno P., Pingarron J.M. 2011. A novel hybrid platform for the preparation of disposable enzyme biosensors based on poly(3,4-ethylenedioxythiophene) electrodeposition in an ionic liquid medium onto gold nanoparticles-modified screen-printed electrodes. Journal of Electroanal Chem., 656: 152-158.
  • [16] Olson M.P., Lacourse W.R. 2004. Voltammetry. In: Ewing's Analytical Instrumentation Handbook, Ed.: Cazes, J., 3rd Ed. Boca Raton FL: CRC Press, 529-544.
  • [17] Greef R.G., Peat R., Peter L.M., Pletcher D., Robınson J. 1990. Instrumental Methods in Electro Chemistry. London, Ellis Horwood series in Physical Chemistry.
  • [18] Kazici H.C. 2018. The Ultra-sensitive method development using Nafion and multi-walled carbon nanotube coated glassy carbon electrode for atenolol determination. Pamukkale University Journal of Engineering Sciences, 24: 1287-1292.