Fe+ İyonu Aşılanmış TiO2 Tek Kristallerin Manyetik Özelliklerinin İncelenmesi

Bu çalışmada, oda sıcaklığında demir (Fe+) iyonları ile aşılanmış (100) ve (001) kristal yönelimine sahip tek kristalve polikristal TiO2 alttaşların manyetik özellikleri sunulmaktadır. İyon aşılama sonrasında ısıl işleme tabi tutulan vetutulmayan örneklerin mıknatıslanma, g- faktörü ve kristal manyetik anizotropileri Elektron Manyetik Rezonans(EMR) ve Titreşimli Örnek Manyetometre (VSM) teknikleri kullanılarak incelenmiştir. Deneysel veriler teorik birmodele dayandırılarak özel bir bilgisayar programı ile fit edilmiştir. Elde edilen sonuçlar, aşılanmış örneklerinferromanyetik bir davranış sergilediklerini ve manyetik özelliklerinin örneğin kristal yönelimine oldukça bağlıolduğunu göstermiştir.

Investigation of Magnetic Properties of Fe+ Implanted TiO2 Single Crystals

In this study, magnetic properties of single crystal and polycrystalline TiO2 substrates with crystal orientation (100) and (001) implanted with iron (Fe+ ) ions at room temperature are presented. After implantation magnetization, gfactor and crystal magnetic anisotropy of the annealed and non-annealed samples were investigated by Electron Magnetic Resonance (EMR) and Vibrating Sample Magnetometer (VSM) techniques. Experimental data were fit with a special computer program based on the theoretical model. The results obtained show that the implanted samples exhibit a ferromagnetic behavior and their magnetic properties are highly dependent on the crystal orientation of the sample.

___

  • [1] Zerentürk A., Açıkgöz M., Kazan S., Yıldız F., Aktaş B., Khaibullin R.I., Rameev B. 2017. Low Temperature EPR Investigation of Co2+ Ion Doped into Rutile TiO2 Single Crystal: Experiments and Simulations. Journal of Magnetism and Magnetic Materials, 423: 145-151.
  • [2] Joshi S.R., Padmanabhan B., Chanda A., Ojha S., Kanjilal D., Varma S. 2017. Complex Damage Distribution Behaviour in Cobalt Implanted Rutile TiO2 (110) Lattice. Nuclear Instruments and Methods in Physics Research B, 410: 114-121.
  • [3] Wu S.Y., Zheng W.C. 2002. Studies of EPR g-Factors on Rutile (TiO2) with Co2+ Ion. Z. Naturforsch, 57a: 45-48.
  • [4] Li H., Zhang Y., Wang S., Wu Q., Liu C. 2009. Study on Nanomagnets Supported TiO2 Photocatalysts Prepared by a Sol-gel Process in Reverse Microemulsion Combining with SolventThermal Technique. J. Hazard Mater, 30, 169 (1-3): 1045-1053.
  • [5] Liao D. L., Liao B.Q. 2007. Shape, Size and Photocatalytic Activity Control of TiO2 Nanoparticles with Surfantants. Journal of Photochemistry and Photobiology A: Chemistry, 187 (2-3): 363-369.
  • [6] O’Regan B., Gratzel M. 1991. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films. Nature, 353: 737-740.
  • [7] Joshi S.R., Padmanabhan B., Chanda A., Mishra I., Malik V.K., Mishra N.C., Kanjilal D., Varma S. 2016. Optical Studies of Cobalt Implanted Rutile TiO2 (110) surface. Applied Surface Science, 387: 938-943.
  • [8] Ghosh A.K., Maruska H.P. 1977. Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes. J. Electrochem. Soc., 124 (10): 1516-1522.
  • [9] Pickett M.D., Medeiros-Ribeiro G., Williams R.S. 2013. A Scalable Neuristor Built with Mott Memristors. Nat. Mater., 12: 114-117.
  • [10] Chua L.O. 1971. Memristor-The Missing Circuit Element, IEEE Transactions on Circuit Theory, CT-18 (5): 507–519.
  • [11] Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. 2008. The Missing Memristor Found. Nature, 453: 80-83.
  • [12] Campbell S.A., Kim H.-S., Gilmer D.C., He B., Ma T., Gladfelter W.L. 1999. Titanium Dioxide (TiO2)-based Gate Insulators. Ibm Journal of Research and Development, 43 (3): 383-392.
  • [13] Ohno H. 1999. Properties of Ferromagnetic III-V Semiconductors. Journal of Magnetism and Magnetic Materials, 200 (1-3): 110-129.
  • [14] Dietl T., Ohno H., Matsukura F., Cibert J., Ferrand D. 2000. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 287 (5455): 1019-1022.
  • [15] Matsumoto Y., Murakami M., Shono T., Hasegawa T., Fukumura T., Kawasaki M., Ahmet P., Chikyow T., Koshihara S., Koinuma H. 2001. Room-temperature Ferromagnetism in Transparent Transition Metal-doped Titanium Dioxide. Science, 291 (5505): 854-856.
  • [16] Okay C., Vakhitov I.R., Valeev V.F., Khaibullin R.I., Rameev B. 2017. Magnetic Resonance Study of Fe-implanted TiO2 Rutile. Appl. Magn. Reson., 48: 347-360.
  • [17] Akdogan N., Nefedov A., Zabel H., Westerholt K., Becker H.-W, Somsen C., Gok S., Bashir A., Khaibullin R., Tagirov L. 2009. High-temperature Ferromagnetism in Co-implanted TiO2 Rutile. Journal of Physics D: Applied Physics, 42 (11): 115005.
  • [18] Rameev B., Okay C., Yildiz F., Khaibullin R.I., Popok V.N., Aktas B. 2004. Ferromagnetic Resonance Investigations of Cobalt-implanted Polyimides. Journal of Magnetism And Magnetic Materials, 278 (1-2): 164-171.
  • [19] Mikaizade F., Maksutoglu M., Khaibullin R.I., Valeev V.F., Nuzhdin V.I., Aliyeva V.B., Mammadov T.G. 2016. Magnetodielectric Effects in Co-implanted TilnS2 and TiGaSe2 Crystals. Phase Transitions, 89 (6): 568-577.
  • [20] Khalitov N.I., Khaibullin R.I., Valeev V.F., Dulov E.N., Ivoilov N.G., Tagirov L.R., Kazan S., Sale A.G., Mikailzade F.A. 2012. Structural and Magnetic Studies of Co and Fe Implanted BaTiO3 Crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 272: 104-107.
  • [21] Guskos N., Glenis S., Zolnierkiewicz G., Guskos A., Typek J., Berczynski P., Dolat D., Mozia S., Morawski A.W. 2015. Magnetic Properties of Co-modified Fe, N-TiO2 Nanocomposites. Open Physcis, 13: 78-82.
  • [22] Errico L.A., Rentería M., Weissmann M. 2005. Theoretical Study of Magnetism in Transition Metal-Doped TiO2 and TiO2-. Physical Review B, 72: 184425.
  • [23] Geng W.T., Kim Kwang S. 2003. Structural, Electronic, and Magnetic Properties of a Ferromagnetic Semiconductor: Co-doped TiO2 rutile. Physical Review B, 68: 125203.
  • [24] Xiang B.X., Jiao Y., Guan J., Wang L. 2015. Ion Implantation Induced Blistering of Rutile Single Crystals. Nuclear Instruments and Methods in Physics Research B, 354: 255-258.
  • [25] Huo-Ping Z., Nan-Nan X., Gong-Ping L., Tian-Jing L., Xing-xin G., Jing-Sheng C. 2013. The Magnetic Properties and Microscopic Structural of a Ferromegnaetic Semiconductor: Rutile TiO2 Single Crystals Implanted with Cobalt Ions. Surface&Coating Technology, 229: 109-111.
  • [26] Kittel C. 1996. Introduction to Solid State Physics. Wiley Yayınları, 487s. New York.
  • [27] Weil, J.A., Bolton, J.R. 2007. Electron Paramagnetic Resonance. Wiley Yayınları, 36s. Kanada.
  • [28] Poole C.P., Horacio Jr., Farach A. 1986. Theory of Magnetic Resonance, Wiley Yayınları, 138s. Kanada.
  • [29] Yıldız F., Rameev B., Khaibullin R., Tagirov L., Özdemir M. Aktas B. 2004. Giant Room Temperature Ferromagnetism in Rutile TiO2 Implanted by Co. Physica Status Solidi C, 1 (12): 3319-3323.
  • [30] Kazan S., Mikailzade F.A., Şale A.G., Maksutoğlu M., Acikgoz M. 2010. Magnetic Properties of Co-implanted BaTiO3 Perovskite Crystal. Physical Review B, 82: 054402.
  • [31] Dubowik J. 1996. Shape Anisotropy of Magnetic Heterostructures. Physical Review B, 54 (2): 1088-1091.
  • [32] Kakazei G.N., Kravets A.F., Lesnik N.A., Pereira de Azevedo M.M., Pogorelov Y.G., Sousa J.B. 1999. Ferrmagnetic Resonance in Granular Thin Films. Journal of Applied Physics, 85 (8): 5654- 5656.
  • [33] Okay C., Rameev B.Z., Khaibullin R.I., Okutan M., Yıldız F., Popok V.N., Aktas B. 2006. Ferromagnetic Resonance Study of Iron Implanted PET Foils. Phys. Stat. Sol., 203 (7): 1525-1532.
  • [34] Rameev B., Okay C.,Yıldız F., Khaibullin R.I., Popok V.N., Aktas B. 2004. Ferromagnetic Resonance Investigations of Cobalt-implanted Polymides. Journal of Magnetism and Magnetic Materials, 278: 164-171.
  • [35] Khaibullin R.I., Tagirov L.R., Rameev B.Z., Ibragimov Sh.Z., Yıldız F., Aktas B. 2004. High Curie-temperature Ferromagnetism in Cobalt-implanted Single-crystalline Rutile. J. Phys. Condens. Matter, 16: L443-L449.
  • [36] Ay F., Rameev B.Z., Basaran A.C., Kupriyanova G.S., Goikhman A.Y., Aktaş B. 2017. Magnetic Properties of Fe/Ni and Fe/Co Multilayer Thin Films. Appl. Magn. Reson., 48: 85-99.
  • [37] Akdogan N., Rameev B.Z., Dorosinsky L., Sozeri H., Khaibullin R.I., Aktas B., Tagirov L.R., Westphalen A., Zabel H. 2005. Anisotropy of Ferromagnetism in Co-implanted Rutile. J. Phys. Condens. Matter, 17: L359-L366.
  • [38] Cruz M.M., Silva R.C., Pinto J.V., Borges R.P., Franco N., Casaca A. 2013. Formation of Oriented Nickel Aggregates in Rutile Single Crystals by Ni Implantation. Journal of Magnetism and Magnetic Materials, 340: 102-108.
  • [39] Khaibullin R.I., Ibragimov Sh.Z., Tagirov L.R., Popok V.N., Khaibullin I.B. 2007. Formation of Anisotropic Ferromagnetic Response in Rutile (TiO2) Implanted with Cobalts Ions, Nucl. Instrum. Methods Phys. Res. B, 257 (1-2): 369-373.
  • [40] Okay C., Rameev B.Z., Guler S., Khaibullin R.I., Khakimova R.R., Osin Y.N., Akdogan N., Gumarov A.I., Nefedov A., Zabel H., Aktas B. 2011. Optical and Magnetic Properties of NiImplanted and Post-annealed ZnO Thin Films, Appl. Phys. A, 104 (2): 667-675.
  • [41] Zhou S., Talut G., Potzger K., Shalimov A., Grenzer J., Skorupa W., Helm, Fassbender J., Cizmar E., Zvyagin S.A., Wosnitza J. 2008. Crystallographically Oriented Fe Nanocrystals Formed in FeImplanted TiO2. Journal of Applied Physics, 103: 083907.
  • [42] Dulov E.N., Ivoilov N.G., Khripunov D.M., Tagirov L.R., Khaibullin R.I., Valev V.F., Nuzhdin V.I. 2009. Mössbauer Study of The Magnetic Phase Composition of Single-crystalline Rutile (TiO2) Implanted with Iron Ions. Techical Physics Letters, 35(6): 483-486.
  • [43] Guler S., Rameev B., Khaibullin R.I., Bayrakdar H., Aktas B. 2006. EPR Study of Paramagnetic Fe3+ Centers in Iron-implanted TiO2 Rutile. Phys. Status Solidi A, 203 (7): 1533-1538.
  • [44] Aktaş B., Heinrich B., Woltersdorf G., Urban R., Tagirov L.R., Yıldız F., Özdoğan K., Özdemir M., Yalçin O., Rameev Z. 2007. Magnetic Anisotropies in Utrathin Films Grown on The Surface Reconstructed GaAs Substrate, 102: 013912.
  • [45] Netzelmann U. 1990. Feromagnetic Resonance of Particulate Magnetic Recording Tapes. Journal of Applied Physics, 68 (4): 1800-1807.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü
Sayıdaki Diğer Makaleler

Investigating the Effect of Geometrical and Dynamic Parameters on the Performance of Darrieus Turbines: A Numerical Optimization Approach via QBlade Algorithm

Abdullah MURATOĞLU, Muhammed Sungur DEMİR

Pazarlama 4.0 İçin Genetik Algoritma Tabanlı Bir Karar Destek Modeli Önerisi

Cemal AKTÜRK

Yeni Tip Taşlama Yönteminde Taşlama Parametrelerinin Deneysel Tasarım Yöntemi İle Yüzey Pürüzlülüğü Üzerine Etkisinin İncelenmesi

Oktay ADIYAMAN, Fikret SÖNMEZ

K-Means Kümeleme Algoritması Kullanılarak Oluşturulan Yapay Zekâ Modelleri ile Sediment Taşınımının Tespiti

Kemal SAPLIOĞLU, Ramazan ACAR

Geometrik ve Dinamik Parametrelerin Darrieus Türbin Performansı Üzerindeki Etkisinin Araştırılması: QBlade Algoritması ile Sayısal Optimizasyon

Abdullah MURATOĞLU, Muhammed Sungur DEMİR

İkinci mertebeden lineer olmayan adi diferansiyel denklemlerin Laguerre serileri ile çözümü için hesaplamalı bir yaklaşım

Burcu GÜRBÜZ

Tarihi Rombaki Yığma Yapısının Performans Değerlendirmesi

Murat ÇAVUŞLİ, Memduh KARALAR

Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri

Saliha ILICAN, Nihal KUŞ

A Morphological and Stereological Study on Cervical Spinal Cord of One and Five Months Age Male Rat

Gamze ÇAKMAK, Mesude CANDAN

Hacıosman Ormanı Tabiatı Koruma Alanı (Samsun) Florası, Vejetasyon ve Habitat Yapısı ile Genel Bitki Ekolojisi Özellikleri Üzerine Bir Değerlendirme

Okan ÜRKER