Cevap Yüzey Yöntemi Kullanılarak Poli(VPi–ko-MA) / Grafen Kompozitlerinin İletkenliğinin Optimizasyonu

Bu çalışmada, öncelikle poli(Vinil pivalat–ko-Maleik anhidrit) [poli(VPi-ko-MA)] kopolimeri serbest radikalikpolimerizasyon yöntemiyle 65 oC’de 24 saat süreyle sentezlenmiştir. FT-IR ile karakterize edilen kopolimerinkütlece farklı miktarlarda Grafen (GF) içeren kompozitleri çözelti döküm tekniği ile hazırlanmıştır. KompozitlerFT-IR ve SEM teknikleri ile karakterize edilmiştir. Uygulanan voltaj, frekans ve GF içeriği arasında kantitatif birilişki elde etmek için cevap yüzey yöntemi (CYY) kullanılmıştır. Ölçülen cevap, kompozitlerin elektriksel (AC)iletkenliğidir. Modeldeki parametrelerin (frekans, voltaj ve GF miktarı) önemi, varyans analizi ile belirlenmiştir(ANOVA). Model, maksimum elektriksel iletkenliği, 1619 Hz frekansta, voltaj 15.56 V'da ve GF miktarı ağırlıkça% 9.99 için 6.93×10-8 S cm-1 olarak öngörmüştür.

Optimization of Conductivity of Poly (VPi-co-MA) / Graphene Composites by Using Response Surface Method

In this study, firstly Poly(Vinyl pivalate-co-Maleic anhydride) [poly(VPi-co-MA)] copolymer was synthesized by Free radical polymerization method at 65 oC for 24 hours. The composites of the copolymer characterized by FTIR containing different amounts of Graphene (GF) were prepared by solution casting technique. Composites were characterized by FT-IR and SEM techniques. Response surface method (RSM) was used to obtain a quantitative relationship between applied voltage, frequency and GF content. The measured response is the electrical conductivity of the composites. The importance of parameters (frequency, voltage, and GF amount) in the model was determined by variance analysis (ANOVA). The model predicted maximum electrical conductivity as 6.93×10-8 S cm-1 for frequency at 1619 Hz, voltage at 15.56 V, and GF amount 9.99%.

___

  • [1] Koçyiğit Ü.M., Zengin H.B. 2015. Maleik Anhidrit Vinil Asetat Kopolimerinin Ester ve Karboksilat Tuz Türevlerinin Sentezi ve Karakterizasyonu. Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), 36 (5): 47-56.
  • [2] Tavman D.H., Turgut A. 2006. Mikro ve nano boyutlu tanecik katkılı polimer kompozitlerin mekanik özellikleri. Proceedings of 11th International Materials Symposium, April 19-21 Nisan, Denizli, 570-575.
  • [3] Boztuğ A. 1999. Bazı maleik anhidrit terpolimerlerinin ester türevlerinde bilişimin ısısal ve termomekanik özelliklere etkisi. Doktora Tezi, Cumhuriyet Üniversitesi, Fen-Bilimleri Enstitüsü, Sivas.
  • [4] Godovsky D.Y. 2000. Device applications of polymer-nanocomposites. Advances in Polymer Science, 153: 163-205.
  • [5] Alexandre M., Dubois P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28 (1-2): 1- 63.
  • [6] Ray S.S., Okamoto M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28 (11): 1539–1641.
  • [7] Garcia N.J, Bazan J.C. 2009. Electrical conductivity of montmorillonite as a function of relative humidity: La-montmorillonite. Clay Minerals, 44 (1): 81-88.
  • [8] Uddin F. 2008. Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39 (12): 2804-2814.
  • [9] Bao Y.Z., Cong L.F., Huang Z.M., Weng Z.X. 2008. Preparation and proton conductivity of poly(vinylidene fluoride)/layered double hydroxide nanocomposite gel electrolytes. Journal of Materials Science, 43 (1): 390-394.
  • [10] Li Q., Park O.K., Lee J.H. 2009. Positive temperature coefficient behavior of HDPE/EVA blends filled with carbon black. Advanced Materials Research, 79: 2267-2270.
  • [11] Geng Y., Liu M.Y., Li J., Shi X.M., Kim J.K. 2008. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 39 (12): 1876-1883.
  • [12] Liu N., Luo F., Wu H., Liu Y., Zhang C., Chen J. 2008. One step ionic-liquidassisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Advanced Functional Materials, 18: 1518-1525.
  • [13] Geim A.K., MacDonald A.H. 2007. Graphene: exploring carbon flatland. Physics Today, 60 (8): 35-41.
  • [14] Dreyer R.D., Park S., Bielawski C.W., Ruoff R.S. 2010. The chemistry of graphene oxide. Chemical society reviews, 39: 228-240.
  • [15] Allen M.J., Tung V.C., Kaner R.B. 2010. Honeycomb carbon: a review of graphene. Chemical reviews, 110 (1): 132-145.
  • [16] Matsuo Y., Hatase K., Sugie Y. 1999. Selective intercalation of aromatic molecules into alkyltrimethylammonium ion-intercalated graphite oxide. Chemistry Letters, 28 (10): 1109-1110.
  • [17] Cassagneau T., Fendler J.H. 1998. High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Advanced Materials, 10 (11): 877-881.
  • [18] Şengöz O. 2014. Maleik anhidrit içeren kopolimerlerin sentezi, karakterizasyonu ve modifikasyonu. Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • 19] Nasouri K., Shoushtari A.M. 2017. Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Composites Science and Technology, 145: 46-54.
  • [20] Arabia M., Ghaedia M., Ostovan A. 2016. Development of dummy molecularly imprinted based on functionalized silica nanoparticles for determination of acrylamide in processed food by matrix solid phase dispersion. Food chemistry, 210: 78-84.
  • [21] Dyartanti E.R., Susanto H., Widiasa I.N., Purwanto A. 2017. Response surface method (RSM) for optimization of ionic conductivity of membranes polymer electrolyte poly (vinylidene fluoride) (PVDF) with polyvinyl pyrrolidone (PVP) as pore forming agent. IOP Conf. Series: Materials Science and Engineering 206: 012052.
  • [23] Dincer S., Koseli V., Kesim H., Piskin E. 2002. Radical copolymerization of Nisopropylacrylamide with anhydrides of maleic and citraconic acids. European Polymer Journal, 38 (11): 2143-2152.
  • [24] Kumar R., Singh R., Kumar N., Bishnoi K., Bishnoi N. 2009. Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chemical Engineering Journal, 146 (3): 401-407.
  • [25] Wang B., Okoth O.K., Yan K., Zhang J. 2016. A highly selective electrochemical sensor for 4- chloro phenol determination based on molecularly imprinted polymer and PDDA-functionalized graphene. Sensors and Actuators B: Chemical, 236: 294-303.
  • [26] Tanyol M. 2017. Malahit Yeşili İçeren Atıksuların Fenton Oksidasyon Prosesi İle Renk Gideriminde İşletme Parametrelerinin Optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29 (1): 183-191.
  • [27] Kar E., Bose N., Dutta B., Mukherjee N., Mukherjee S. 2017. Poly(vinylidene fluoride)/submicron graphite platelet composite: A smart, lightweight flexible material with significantly enhanced β polymorphism, dielectric and microwave shielding properties. European Polymer Journal, 90: 442-455.
  • [28] Hakkak F., Rafizadeh M., Sarabi A.A., Yousefi M. 2015. Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM). Ionics, 21 (7): 1945-1957.